【題目】已知:如同,△ABC內(nèi)接于⊙O,且半徑OC⊥AB,點D在半徑OB的延長線上,且∠A=∠BCD=30°,AC=2,則由 ,線段CD和線段BD所圍成圖形的陰影部分的面積為 .
【答案】2 ﹣ π
【解析】解:∵OC⊥AB,∠A=∠BCD=30°,AC=2, ∴∠O=60°, = ,
∴AC=BC=6,
∴∠ABC=∠A=30°,
∴∠OCB=60°,
∴∠OCD=90°,
∴OC=BC=2,
∴CD= OC=2 ,
∴線段CD和線段BD所圍成圖形的陰影部分的面積=S△OCD﹣S扇形BOC﹣ 2×2 ﹣ =2 ﹣ π,
所以答案是:2 ﹣ π.
【考點精析】根據(jù)題目的已知條件,利用垂徑定理和扇形面積計算公式的相關(guān)知識可以得到問題的答案,需要掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,直線AB:y=﹣x+b交x軸于點A(8,0),交y軸正半軸于點B.
(1)求點B的坐標(biāo);
(2)如圖2,直線AC交y軸負(fù)半軸于點C,AB=BC,P為線段AB上一點,過點P作y軸的平行線交直線AC于點Q,設(shè)點P的橫坐標(biāo)為t,線段PQ的長為d,求d與t之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,M為CA延長線上一點,且AM=CQ,在直線AC上方的直線AB上是否存在點N,使△QMN是以QM為斜邊的等腰直角三角形?若存在,請求出點N的坐標(biāo)及PN的長度;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸交于點A(﹣1,0)和B(3,0),與y軸交于點C,點D的橫坐標(biāo)為m(0<m<3),連結(jié)DC并延長至E,使得CE=CD,連結(jié)BE,BC.
(1)求拋物線的解析式;
(2)用含m的代數(shù)式表示點E的坐標(biāo),并求出點E縱坐標(biāo)的范圍;
(3)求△BCE的面積最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖數(shù)軸上A、B、C三點對應(yīng)的數(shù)分別是a、b、7,滿足OA=3,BC=1,P為數(shù)軸上一動點,點P從A出發(fā),沿數(shù)軸正方向以每秒1.5個單位長度的速度勻速運動,點Q從點C出發(fā)在射線CA上向點A勻速運動,且P、Q兩點同時出發(fā).
(1)求a、b的值
(2)當(dāng)P運動到線段OB的中點時,點Q運動的位置恰好是線段AB靠近點B的三等分點,求點Q的運動速度
(3)當(dāng)P、Q兩點間的距離是6個單位長度時,求OP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:矩形ABCD中,AB=2,BC=5,E、P分別在AD、BC上,且DE=BP=1.
(1)判斷△BEC的形狀,并說明理由?
(2)判斷四邊形EFPH是什么特殊四邊形?并證明你的判斷;
(3)求四邊形EFPH的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】荊崗中學(xué)決定在本校學(xué)生中,開展足球、籃球、羽毛球、乒乓球四種活動,為了了解學(xué)生對這四種活動的喜愛情況,學(xué)校隨機調(diào)查了該校m名學(xué)生,看他們喜愛哪一種活動(每名學(xué)生必選一種且只能從這四種活動中選擇一種),現(xiàn)將調(diào)查的結(jié)果繪制成如下不完整的統(tǒng)計圖.
(1)m= , n=;
(2)請補全圖中的條形圖;
(3)根據(jù)抽樣調(diào)查的結(jié)果,請估算全校1800名學(xué)生中,大約有多少人喜愛踢足球;
(4)在抽查的m名學(xué)生中,喜愛乒乓球的有10名同學(xué)(其中有4名女生,包括小紅、小梅),現(xiàn)將喜愛打乒乓球的同學(xué)平均分成兩組進(jìn)行訓(xùn)練,且女生每組分兩人,求小紅、小梅能分在同一組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,P是CD上一點,
(1)過點P作AB的垂線段PE;
(2)過點P作CD的垂線,與AB相交于點F;
(3)將線段PE、PF、FO從小到大排列為_____,這樣排列的依據(jù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直角三角形的三邊長分別為a、b、c,以直角三角形的三邊為邊(或直徑),分別向外作等邊三角形、半圓、等腰直角三角形和正方形。那么,這四個圖形中,其面積滿足的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形ABCD的對角線相交于O,給出下列 5個條件:①AB∥CD ;②AD∥BC;③AB=CD ;④∠BAD=∠BCD;⑤OA=OC.從以上5個條件中任選 2個條件為一組,能推出四邊形ABCD為平行四邊形的有( )
A. 4組 B. 5組 C. 6組 D. 7組
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com