【題目】如圖,拋物線y=﹣x2+x+2與x軸交于A,B兩點(A在B的左側(cè)),與y軸交于點C,P為此拋物線對稱軸l上任意一點,則△APC的周長的最小值是( )
A. 2 B. 3 C. 5 D. +
【答案】B
【解析】
作點C關于直線l的對稱點C′,連接AC′交直線l于P,連接PC,則△APC的周長的最小,根據(jù)拋物線的對稱性、二次函數(shù)與一元二次方程的關系計算即可.
作點C關于直線l的對稱點C′,連接AC′交直線l于P,連接PC,則△APC的周長的最小,
由拋物線的對稱性可知,點C′在拋物線上,
當x=0時,y=2,
∴點C的坐標為(0,2),
∴點C′的縱坐標為2,
2=﹣x2+x+2,
解得,x1=0,x2=3,
則點C′的橫坐標為3,
﹣x2+x+2=0,
x1=-1,x2=4,
則點A的坐標為(-1,0),
∴AC′==2,AC==,
∴△APC的周長的最小值是3,
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某足球運動員站在點O處練習射門,將足球從離地面0.5m的A處正對球門踢出(點A在y軸上),足球的飛行高度y(單位:m)與飛行時間t(單位:s)之間滿足函數(shù)關系y=at2+5t+c,已知足球飛行0.8s時,離地面的高度為3.5m.
(1)足球飛行的時間是多少時,足球離地面最高?最大高度是多少?
(2)若足球飛行的水平距離x(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關系x=10t,已知球門的高度為2.44m,如果該運動員正對球門射門時,離球門的水平距離為28m,他能否將球直接射入球門?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點P0的坐標為(2,0),將點P0繞著原點O按逆時針方向旋轉(zhuǎn)60°得點P1,延長OP1到點P2,使OP2=2OP1,再將點P2繞著原點O按逆時針方向旋轉(zhuǎn)60°得點P3,則點P3的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級學習小組在探究學習過程中,用兩塊完全相同的且含60°角的直角三角板ABC與AFE按如圖
(1)所示位置放置放置,現(xiàn)將Rt△AEF繞A點按逆時針方向旋轉(zhuǎn)角α(0°<α<90°),如圖(2),AE與BC交于點M,AC與EF交于點N,BC與EF交于點P.
(1)求證:AM=AN;
(2)當旋轉(zhuǎn)角α=30°時,四邊形ABPF是什么樣的特殊四邊形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD中,AB=6,BC=8.點P在矩形ABCD的內(nèi)部,點E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長為數(shù)___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個二次函數(shù)圖象上部分點的橫坐標x,縱坐標y的對應值如下表:
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | ﹣ | 0 | 2 | 0 | m | ﹣6 | ﹣ | … |
(1)求這個二次函數(shù)的表達式;
(2)求m的值;
(3)在給定的直角坐標系中,畫出這個函數(shù)的圖象;
(4)根據(jù)圖象,寫出當y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P為拋物線y=x2上一動點.
(1)若拋物線y=x2是由拋物線y=(x+2)2﹣1通過圖象平移得到的,請寫出平移的過程;
(2)若直線l經(jīng)過y軸上一點N,且平行于x軸,點N的坐標為(0,﹣1),過點P作PM⊥l于M.
①問題探究:如圖一,在對稱軸上是否存在一定點F,使得PM=PF恒成立?若存在,求出點F的坐標:若不存在,請說明理由.
②問題解決:如圖二,若點Q的坐標為(1.5),求QP+PF的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】由我國完全自主設計、自主建造的首艘國產(chǎn)航母于2018年5月成功完成第一次海上試航任務.某日航母在南海海域試航,如圖,海中有一個小島A,并測得該島四周10海里內(nèi)有暗礁,航母由西向東航行,開始在A島南偏西55°的B處,往東行駛20海里后到達該島的南偏西25°的C處,之后如果航母繼續(xù)向東航行,途中會有觸礁的危險嗎?(參考數(shù)據(jù):sin55°=0.8,cos55°=0.6,tan55°=1.4,sin25°=0.4,cos25°=0.9,tan25°=0.5)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平行四邊形ABCD中,E為BC邊上的一點.連結AE.
(1)若AB=AE, 求證:∠DAE=∠D;
(2)若點E為BC的中點,連接BD,交AE于F,求EF︰FA的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com