【題目】一個二次函數(shù)圖象上部分點的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:

x

﹣4

﹣3

﹣2

﹣1

0

1

2

3

4

y

0

2

0

m

﹣6

(1)求這個二次函數(shù)的表達式;

(2)求m的值;

(3)在給定的直角坐標(biāo)系中,畫出這個函數(shù)的圖象;

(4)根據(jù)圖象,寫出當(dāng)y0時,x的取值范圍.

【答案】(1)y=﹣(x+1)2+2;(2);(3)詳見解析;(4)y<0時,x﹣3或x>1.

【解析】

(1)先確定出頂點坐標(biāo),再設(shè)頂點式解析式為y=a(x+1)2+2,然后將點(1,0)代入求出a的值,從而得解;

(2)x=2代入函數(shù)解析式計算即可得解;

(3)根據(jù)二次函數(shù)圖象的畫法作出圖象即可;

(4)根據(jù)函數(shù)圖象,寫出x軸上方部分的x的取值范圍即可.

(1)由圖表可知拋物線的頂點坐標(biāo)為(﹣1,2),

所以,設(shè)這個二次函數(shù)的表達式為y=a(x+1)2+2,

∵圖象過點(1,0),

a(1+1)2+2=0,

a=﹣

∴這個二次函數(shù)的表達式為y=﹣(x+1)2+2;

(2)x=2時,m=﹣(2+1)2+2=﹣;

(3)函數(shù)圖象如圖所示;

(4)y<0時,x<﹣3x>1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=∠2,要使ABDACD,需從下列條件中增加一個,錯誤的選法是(

A.ADB=∠ADCB.B=∠CC.ABACD.DBDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC和△DCE中,CA=CB,CD=CE,∠CAB= CED=α.

(1)如圖1,將AD、EB延長,延長線相交于點0.

①求證:BE= AD;

②用含α的式子表示∠AOB的度數(shù)(直接寫出結(jié)果);

(2)如圖2,當(dāng)α=45°時,連接BD、AE,CMAEM點,延長MCBD交于點N.求證:NBD的中點.

:(2)問的解答過程無需注明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖所示,在直角坐標(biāo)系中,第一次將△OAB變換成,第二次將變換成,第三次將變換成,已知,,,,

1)觀察每次變換前后的三角形有何變化,找出規(guī)律,按此規(guī)律再將變換成,則的坐標(biāo)為 ,的坐標(biāo)為

2)可以發(fā)現(xiàn)變換過程中……的縱坐標(biāo)均為

3)按照上述規(guī)律將△OAB進行n次變換得到,則可知的坐標(biāo)為 , 的坐標(biāo)為

4)線段的長度為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)實踐課上,同學(xué)們分組測量教學(xué)樓前國旗桿的高度.小澤同學(xué)所在的組先設(shè)計了測量方案,然后開始測量了.他們?nèi)M分成兩個測量隊,分別負責(zé)室內(nèi)測量和室外測量(如圖).室內(nèi)測量組來到教室內(nèi)窗臺旁,在點E處測得旗桿頂部A的仰角α45°,旗桿底部B的俯角β60°. 室外測量組測得BF的長度為5.則旗桿AB=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠ADC=90°,點E是BC邊上一動點,聯(lián)結(jié)AE,過點E作AE的垂線交直線CD于點F.已知AD=4cm,CD=2cm,BC=5cm,設(shè)BE的長為xcm,CF的長為ycm.

小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行探究.

下面是小東的探究過程,請補充完整:

(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:

x/cm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

y/cm

2.5

1.1

0

0.9

1.5

1.9

2

1.9

  

0.9

0

(說明:補全表格時相關(guān)數(shù)據(jù)保留一位小數(shù))

(2)建立直角坐標(biāo)系,描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;

(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)BE=CF時,BE的長度約為  cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一商店銷售某種商品,平均每天可售出20件,每件盈利40元.為了擴大銷售,增加盈利,該店采取了降價措施.在每件盈利不少于25元的前提下,經(jīng)過一段時間銷售,發(fā)現(xiàn)銷售單價每降低1元,平均每天可多售出2件.

1)若降價4元,則平均每天銷售數(shù)量為   件;

2)當(dāng)每件商品降價多少元時,該商店每天銷售利潤為1050元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某居民小區(qū)為了綠化小區(qū)環(huán)境,建設(shè)和諧家園,準(zhǔn)備將一塊周長為76米的長方形空地,設(shè)計成長和寬分別相等的9塊小長方形,如圖所示,計劃在空地上種上各種花卉,經(jīng)市場預(yù)測,綠化每平方米空地造價210元,請計算,要完成這塊綠化工程,預(yù)計花費多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD和AEFG是兩個互相重合的矩形,如圖2將矩形AEFG繞點A按順時針方向旋轉(zhuǎn)α度(0≤α≤90°),點G恰好落在矩形ABCD的對角線上,AB與FG相交于點M,連接BE交FG于點N.

(1)當(dāng)AB=AD時,請直接寫出ABE的度數(shù);

(2)當(dāng)ADB=60°時,求ABE的度數(shù);

(3)如圖3,當(dāng)AB=2AD=2時,求點A到直線BE的距離; 直接寫出BMN的周長.

查看答案和解析>>

同步練習(xí)冊答案