【題目】如圖,內(nèi)接于,為的直徑,,,、分別是邊、上的兩個(gè)動(dòng)點(diǎn)(不與端點(diǎn)、、重合),將沿折疊,點(diǎn)的對(duì)應(yīng)點(diǎn)恰好落在線段上(包含端點(diǎn)、),若為等腰三角形,則的長(zhǎng)為__.
【答案】或或
【解析】
分三種情況討論:當(dāng)AB'=DB'時(shí),△ADB′是等腰三角形;當(dāng)AD=AB'時(shí),△ADB′是等腰三角形;當(dāng)AD=B'D時(shí),△AEB′是等腰三角形,分別根據(jù)等腰三角形的性質(zhì)以及勾股定理進(jìn)行計(jì)算,即可得到CB′的值.
解:內(nèi)接于,為的直徑,
∴∠C=90°,
∵BC=3,AB=5,
∴AC=4,
分三種情況討論:
①如圖所示,當(dāng)AD=DB'時(shí),△ADB′是等腰三角形;
∴DB=B'D=AD,
即:D點(diǎn)與O點(diǎn)重合,B'與C重合,
AD=
②如圖所示,當(dāng)B'D=AB'時(shí),△AEB′是等腰三角形,
過(guò)B'作B'H⊥AB,垂足為H,
∴AH=DH
∴△AHB'∽△ABC
設(shè)AB'=B'D=BD=5x,則AH= DH =4x,HB'=3x,
∴AB=BD+DH+AH=13x,
即13x=5,x=,
AD=8x=
③如圖所示,當(dāng)AD=AB'時(shí),△AEB′是等腰三角形,
過(guò)B'作B'H⊥AB,垂足為H,
∴△AHB'∽△ABC
設(shè)AB'=AD=5x,則AH=4x,HB'=3x,DH=x,
∴DB=DB'= ==
∴5x+=5
解得,
∴AD=5x=.
綜上所述:AD的長(zhǎng)為:或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC紙片中,AB=BC>AC,點(diǎn)D是AB邊的中點(diǎn),點(diǎn)E在邊AC上,將紙片沿DE折疊,使點(diǎn)A落在BC邊上的點(diǎn)F處.則下列結(jié)論成立的個(gè)數(shù)有( 。佟BDF是等腰直角三角形;②∠DFE=∠CFE;③DE是△ABC的中位線;④BF+CE=DF+DE.
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r,給出如下定義:若點(diǎn)P的橫、縱坐標(biāo)均為整數(shù),且到圓心C的距離d≤r,則稱(chēng)P為⊙C 的關(guān)聯(lián)整點(diǎn).
(1)當(dāng)⊙O的半徑r=2時(shí),在點(diǎn)D(2,-2),E(-1,0),F(0,2)中,為⊙O的關(guān)聯(lián)整點(diǎn)的是 ;
(2)若直線上存在⊙O的關(guān)聯(lián)整點(diǎn),且不超過(guò)7個(gè),求r的取值范圍;
(3)⊙C的圓心在x軸上,半徑為2,若直線上存在⊙C的關(guān)聯(lián)整點(diǎn),求圓心C的橫坐標(biāo)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中學(xué)生上網(wǎng)現(xiàn)象越來(lái)越受到社會(huì)的關(guān)注,小記者小慧隨機(jī)調(diào)查了某校若干學(xué)生和家長(zhǎng)對(duì)上網(wǎng)現(xiàn)象的看法,制作了如下的統(tǒng)計(jì)圖①和②。請(qǐng)根據(jù)相關(guān)信息,解答或補(bǔ)全下列問(wèn)題。
學(xué)生及家長(zhǎng)對(duì)中學(xué)生上網(wǎng)的態(tài)度統(tǒng)計(jì)圖 家長(zhǎng)對(duì)中學(xué)生上網(wǎng)的態(tài)度統(tǒng)計(jì)圖
(1)補(bǔ)全圖①;
(2)求圖②中表示家長(zhǎng)“贊成”的圓心角的度數(shù);
(3)該校共有1600名學(xué)生,請(qǐng)你估計(jì)這所中學(xué)的所有學(xué)生中,對(duì)上網(wǎng)持“反對(duì)”態(tài)度的有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,這個(gè)圖案是3世紀(jì)我國(guó)漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時(shí)給出的,人們稱(chēng)它為“趙爽弦圖”.已知AE=3,BE=2,若向正方形ABCD內(nèi)隨意投擲飛鏢(每次均落在正方形ABCD內(nèi),且落在正方形ABCD內(nèi)任何一點(diǎn)的機(jī)會(huì)均等),則恰好落在正方形EFGH內(nèi)的概率為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片ABCD,AD=4,AB=3,如果點(diǎn)E在邊BC上,將紙片沿AE折疊,使點(diǎn)B落在點(diǎn)F處,聯(lián)結(jié)FC,當(dāng)△EFC是直角三角形時(shí),那么BE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)G,CE的延長(zhǎng)線交DA的延長(zhǎng)線于點(diǎn)H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請(qǐng)說(shuō)明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出S與m的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.
②請(qǐng)直接寫(xiě)出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年8月.山西龍城將迎來(lái)全國(guó)第二屆青年運(yùn)動(dòng)會(huì),盛會(huì)將至,整個(gè)城市已經(jīng)進(jìn)入了全力準(zhǔn)備的狀態(tài).太職學(xué)院足球場(chǎng)作為一個(gè)重要比賽場(chǎng)館.占地面積約24300平方米.總建筑面積4790平方米,設(shè)有2476個(gè)座位,整體建筑簡(jiǎn)潔大方,獨(dú)具特色.2018年3月15日該場(chǎng)館如期開(kāi)工,某施工隊(duì)負(fù)責(zé)安裝該場(chǎng)館所有座位,在安裝完476個(gè)座位后,采用新技術(shù),效率比原來(lái)提升了.結(jié)來(lái)比原計(jì)劃提前4天完成安裝任務(wù).求原計(jì)劃每天安裝多少個(gè)座位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱(chēng)這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫(xiě)出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com