【題目】如圖,在△ABC中,∠B與∠C的角平分線相交于點(diǎn)I,過(guò)點(diǎn)IBC的平行線,分別交AB、AC于點(diǎn)D、E.若AB=9,AC=6BC=8,則△ADE的周長(zhǎng)是( )

A. 14B. 15C. 17D. 23

【答案】B

【解析】

根據(jù)角平分線的定義得∠DBI=CBI,∠ECI=BCI,再根據(jù)平行線的性質(zhì)得∠DFB=CBI,∠BCI=EIC,則∠DBI=DIB,∠ECI=EIC,根據(jù)平行線的判定得DB=DIEI=EC,再根據(jù)三角形的定義得ADE的周長(zhǎng)= AD+DE+AE=AD+DI+AE+EI=AD+DB+AE+CE=AB+AC

BI、CI分別平分∠ABC和∠ACB,

∴∠ABI=CBI,∠ACI=BCI.

DEBC

∴∠DIB=IBC,∠BCI=EIC.

∴∠ABI=DIB,∠EIC=ACI.

DB=DI,EI=EC.

LADE=AD+DE+AE=AD+DI+AE+EI=AD+DB+AE+CE=AB+AC=9+6=15.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)某十字路口的汽車(chē),它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn),由于該十字路口右拐彎處是通往新建經(jīng)濟(jì)開(kāi)發(fā)區(qū)的,因此交管部門(mén)在汽車(chē)行駛高峰時(shí)段對(duì)車(chē)流量作了統(tǒng)計(jì),發(fā)現(xiàn)汽車(chē)在此十字路口向右轉(zhuǎn)的頻率為,向左轉(zhuǎn)和直行的頻率均為.

(1)假設(shè)平均每天通過(guò)該路口的汽車(chē)為5 000輛,求汽車(chē)在此向左轉(zhuǎn)、向右轉(zhuǎn)、直行的車(chē)輛各是多少輛;

(2)目前在此路口,汽車(chē)向左轉(zhuǎn)、向右轉(zhuǎn)、直行的綠燈亮的時(shí)間都為30 s,在綠燈亮總時(shí)間不變的條件下,為了緩解交通擁擠,請(qǐng)你利用概率的知識(shí)對(duì)此路口三個(gè)方向的綠燈亮的時(shí)間做出合理的調(diào)整

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代偉大的數(shù)學(xué)家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個(gè)正方形和兩對(duì)全等的直角三角形,得到一個(gè)恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個(gè)這樣的圖形拼成,若a=3,b=4,則該矩形的面積為(

A. 20 B. 24 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將九年級(jí)部分男生擲實(shí)心球的成績(jī)進(jìn)行整理,分成5個(gè)小組(x表示成績(jī),單位:米).A組:5.25≤x<6.25;B組:6.25≤x<7.25;C組:7.25≤x<8.25;D組:8.25≤x<9.25;E組:9.25≤x<10.25,并繪制出扇形統(tǒng)計(jì)圖和頻數(shù)分布直方圖(不完整).規(guī)定x≥6.25為合格,x≥9.25為優(yōu)秀.

(1)這部分男生有多少人?其中成績(jī)合格的有多少人?

(2)這部分男生成績(jī)的中位數(shù)落在哪一組?扇形統(tǒng)計(jì)圖中D組對(duì)應(yīng)的圓心角是多少度?

(3)要從成績(jī)優(yōu)秀的學(xué)生中,隨機(jī)選出2人介紹經(jīng)驗(yàn),已知甲、乙兩位同學(xué)的成績(jī)均為優(yōu)秀,求他倆至少有1人被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,的平分線與外角的平分線所在的直線交于點(diǎn).

(1)如圖1,若,求的度數(shù);

(2)如圖2,把沿翻折,點(diǎn)落在處.

①當(dāng)時(shí),求的度數(shù);②試確定的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過(guò)對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與⊙O,AB是⊙O的直徑,AD于點(diǎn)D

1如圖①,當(dāng)直線與⊙O相切于點(diǎn)C時(shí),若∠DAC=30°,求∠BAC的大;

2如圖②,當(dāng)直線與⊙O相交于點(diǎn)E、F時(shí),若∠DAE=18°,求∠BAF的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形紙片ABCD,AD=4AB=3,如果點(diǎn)E在邊BC上,將紙片沿AE折疊,使點(diǎn)B落在點(diǎn)F處,聯(lián)結(jié)FC,當(dāng)EFC是直角三角形時(shí),那么BE的長(zhǎng)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探索與證明:

1)如圖①,直線經(jīng)過(guò)正三角形的頂點(diǎn),在直線上取點(diǎn),,使得,.通過(guò)觀察或測(cè)量,猜想線段之間滿足的數(shù)量關(guān)系,并予以證明;

2)將(1)中的直線繞著點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)一個(gè)角度到如圖②的位置,,.通過(guò)觀察或測(cè)量,猜想線段之間滿足的數(shù)量關(guān)系,并予以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案