【題目】(1)
(2)如圖,小方在清明假期中到郊外放風(fēng)箏,風(fēng)箏飛到C 處時(shí)的線長BC為20米,此時(shí)小方正好站在A處,并測得∠CBD=60°,牽引底端B離地面1.5米,求此時(shí)風(fēng)箏離地面的高度.(,,結(jié)果精確到0.1米)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和函數(shù)y=mx2+2x+2 (m是常數(shù),且m≠0)的圖象可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線交軸于,兩點(diǎn),與軸交于點(diǎn).連接.
(1)求拋物線的解析式和點(diǎn)的坐標(biāo);
(2)“若點(diǎn)為第四象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)的橫坐標(biāo)為,的面積為,求關(guān)于的函數(shù)關(guān)系式,并求出的最大值;
(3)拋物線的對(duì)稱軸上是否存在點(diǎn),使為等腰三角形?若存在,請(qǐng)直接寫出所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖1,在以O為原點(diǎn)的平面直角坐標(biāo)系中,拋物線y=x2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C(0,﹣1),連接AC,AO=2CO,直線l過點(diǎn)G(0,t)且平行于x軸,t<﹣1.
(1)求拋物線對(duì)應(yīng)的二次函數(shù)的解析式;
(2)若D(﹣4,m)為拋物線y=x2+bx+c上一定點(diǎn),點(diǎn)D到直線l的距離記為d,當(dāng)d=DO時(shí),求t的值.
(3)如圖2,若E(﹣4,m)為上述拋物線上一點(diǎn),在拋物線上是否存在點(diǎn)F,使得△BEF是直角三角形,若存在求出點(diǎn)F的坐標(biāo),若不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(2,﹣1),圖象與y軸交于點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn).
(1)求拋物線的解析式;
(2)設(shè)拋物線對(duì)稱軸與直線BC交于點(diǎn)D,連接AC、AD,點(diǎn)E為直線BC上的任意一點(diǎn),過點(diǎn)E作x軸的垂線與拋物線交于點(diǎn)F,問是否存在點(diǎn)E使△DEF為直角三角形?若存在,求出點(diǎn)E坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A.“明天降雨的概率為”,表示明天有半天都在降雨
B.“拋一枚硬幣,正面朝上的概率為”,表示每拋擲兩次就有一次正面朝上
C.“拋一枚均勻的正方體骰子,朝上的點(diǎn)數(shù)是6的概率為”,表示隨著拋擲次數(shù)的增加,“拋出朝上的點(diǎn)數(shù)是6”這一事件發(fā)生的概率穩(wěn)定在 附近
D.某種彩票的中獎(jiǎng)概率為,買1000張這種彩票一定有一張中獎(jiǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某風(fēng)景區(qū)內(nèi)有一古塔AB,在塔的北面有一建筑物,當(dāng)光線與水平面的夾角是30°時(shí),塔在建筑物的墻上留下了高3米的影子CD;而當(dāng)光線與地面的夾角是45°時(shí),塔尖A在地面上的影子E與墻角C有15米的距離(B、E、C在一條直線上),求塔AB的高度(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在Rt△ABC中,∠ACB=90°,現(xiàn)按如下步驟作圖:
①分別以A,C為圓心,a為半徑(a>AC)作弧,兩弧分別交于M,N兩點(diǎn);
②過M,N兩點(diǎn)作直線MN交AB于點(diǎn)D,交AC于點(diǎn)E;
③將△ADE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)180°,設(shè)點(diǎn)D的像為點(diǎn)F.
(1)請(qǐng)?jiān)趫D中直線標(biāo)出點(diǎn)F并連接CF;
(2)求證:四邊形BCFD是平行四邊形;
(3)當(dāng)∠B為多少度時(shí),四邊形BCFD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車在剎車后行駛的距離s(單位:米)與時(shí)間t(單位:秒)之間的關(guān)系得部分?jǐn)?shù)據(jù)如下表:
時(shí)間t(秒) | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 1.2 | … |
行駛距離s(米) | 0 | 2.8 | 5.2 | 7.2 | 8.8 | 10 | 10.8 | … |
假設(shè)這種變化規(guī)律一直延續(xù)到汽車停止.
(1)根據(jù)這些數(shù)據(jù)在給出的坐標(biāo)系中畫出相應(yīng)的點(diǎn);
(2)選擇適當(dāng)?shù)暮瘮?shù)表示s與t之間的關(guān)系,求出相應(yīng)的函數(shù)解析式;
(3)①剎車后汽車行駛了多長距離才停止?
②當(dāng)t分別為t1,t2(t1<t2)時(shí),對(duì)應(yīng)s的值分別為s1,s2,請(qǐng)比較與的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com