【題目】如圖,在平行四邊形中,對角線,交于點(diǎn). 為中點(diǎn),連接交于點(diǎn),且.
(1)求的長;
(2)若的面積為2,求四邊形的面積.
【答案】(1)6;(2)5.
【解析】
(1)由四邊形ABCD為平行四邊形,得到對邊平行且相等,且對角線互相平分,根據(jù)兩直線平行內(nèi)錯(cuò)角相等得到兩對角相等,進(jìn)而確定出三角形MND與三角形CNB相似,由相似得比例,得到DN:BN=1:2,設(shè)OB=OD=x,表示出BN與DN,求出x的值,即可確定出BD的長;
(2)由相似三角形相似比為1:2,得到S△MND:S△CND=1:4,可得到△MND面積為1,△MCD面積為3,由S平行四邊形ABCD=ADh,S△MCD=MDh=ADh,=4S△MCD,即可求得答案.
(1)∵平行四邊形ABCD,∴AD∥BC,AD=BC,OB=OD,
∴∠DMN=∠BCN,∠MDN=∠NBC,
∴△MND∽△CNB,∴,
∵M為AD中點(diǎn),所以BN=2DN,
設(shè)OB=OD=x,則有BD=2x,BN=OB+ON=x+1,DN=x﹣1,
∴x+1=2(x﹣1),解得:x=3,∴BD=2x=6;
(2)、∵△MND∽△CNB,且相似比為1:2,
∴MN:CN=1:2,∴S△MND:S△CND=1:4,
∵△DCN的面積為2,∴△MND面積為1,∴△MCD面積為3,
設(shè)平行四邊形AD邊上的高為h,
∵S平行四邊形ABCD=ADh,S△MCD=MDh=ADh,
∴S平行四邊形ABCD=4S△MCD=12,∴S△ABD=6,
∴S四邊形ABNM= S△ABD- S△MND =6-1=5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=(x-2)2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,過點(diǎn)B作BC∥x軸,交拋物線于點(diǎn)C,過點(diǎn)A作AD∥y軸,交BC于點(diǎn)D,點(diǎn)P在BC下方的拋物線上(不與點(diǎn)B,C重合),連接PC,PD,設(shè)△PCD的面積為S,則S的最大值是________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c交x軸分別于點(diǎn)A(﹣3,0),B(1,0),交y軸正半軸于點(diǎn)D,拋物線頂點(diǎn)為C.下列結(jié)論
①2a﹣b=0;
②a+b+c=0;
③當(dāng)m≠﹣1時(shí),a﹣b>am2+bm;
④當(dāng)△ABC是等腰直角三角形時(shí),a=;
⑤若D(0,3),則拋物線的對稱軸直線x=﹣1上的動點(diǎn)P與B、D兩點(diǎn)圍成的△PBD周長最小值為3,其中,正確的個(gè)數(shù)為( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上有A、B兩地,甲、乙兩輛貨車都要從A地送貨到B地,甲車先從A地出發(fā)勻速行駛,3小時(shí)后,乙車從A地出發(fā),并沿同一路線勻速行駛,當(dāng)乙車到達(dá)B地后立刻按原速返回,在返回途中第二次與甲車相遇。甲車出發(fā)的時(shí)間記為t (小時(shí)),兩車之間的距離記為y(千米),y與t的函數(shù)關(guān)系如圖所示,則乙車第二次與甲車相遇時(shí),甲車距離A地___千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(―3,6)、B(―9,一3),以原點(diǎn)O為位似中心,相似比為,把△ABO縮小,則點(diǎn)A的對應(yīng)點(diǎn)A′的坐標(biāo)是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E是AD邊的中點(diǎn),BD,CE交于點(diǎn)H,BE、AH交于點(diǎn)G,則下列結(jié)論:①∠ABE=∠DCE;②AG⊥BE;③S△BHE=S△CHD;④∠AHB=∠EHD.其中正確的是( )
A.①③B.①②③④C.①②③D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=ax+b的圖象上有兩點(diǎn)A、B,它們的橫坐標(biāo)分別是3,-1,若二次函數(shù)y=x2的圖象經(jīng)過A、B兩點(diǎn).
(1)請求出一次函數(shù)的表達(dá)式;
(2)設(shè)二次函數(shù)的頂點(diǎn)為C,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是一塊邊長為4米的正方形苗圃,園林部門將其改造為矩形的形狀,其中點(diǎn)在邊上,點(diǎn)在的延長線上, 設(shè)的長為米,改造后苗圃的面積為平方米.
(1) 與之間的函數(shù)關(guān)系式為 (不需寫自變量的取值范圍);
(2)根據(jù)改造方案,改造后的矩形苗圃的面積與原正方形苗圃的面積相等,請問此時(shí)的長為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,)三點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為x軸上一動點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com