【題目】甲、乙、丙、丁四名跳遠(yuǎn)運(yùn)動(dòng)員選拔賽成績(jī)的平均數(shù)與方差s2如下表所示:
甲 | 乙 | 丙 | 丁 | |
平均數(shù)(cm) | 561 | 560 | 561 | 560 |
方差s2 | 3.5 | 3.5 | 15.5 | 16.5 |
根據(jù)表中數(shù)據(jù),要從中選擇一名成績(jī)好又發(fā)揮穩(wěn)定的運(yùn)動(dòng)員參加比賽,應(yīng)該選擇( 。
A. 甲B. 乙C. 丙D. 丁
【答案】A
【解析】
試題根據(jù)方差和平均數(shù)的意義找出平均數(shù)大且方差小的運(yùn)動(dòng)員即可.
解:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,
∴S甲2=S乙2<S丙2<S丁2,
∴發(fā)揮穩(wěn)定的運(yùn)動(dòng)員應(yīng)從甲和乙中選拔,
∵甲的平均數(shù)是561,乙的平均數(shù)是560,
∴成績(jī)好的應(yīng)是甲,
∴從中選擇一名成績(jī)好又發(fā)揮穩(wěn)定的運(yùn)動(dòng)員參加比賽,應(yīng)該選擇甲;
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)口袋中有4個(gè)完全相同的小球,把它們分別標(biāo)號(hào)1、2、3、4.小明先隨機(jī)地摸出一個(gè)小球,小強(qiáng)再隨機(jī)地摸出一個(gè)小球.記小明摸出球的標(biāo)號(hào)為x,小強(qiáng)摸出的球標(biāo)號(hào)為y.小明和小強(qiáng)在此基礎(chǔ)上共同協(xié)商一個(gè)游戲規(guī)則:當(dāng)x>y時(shí)小明獲勝。否則小強(qiáng)獲勝.
(1)若小明摸出的球不放回,求小明獲勝的概率;
(2)若小明摸出的球放回后小強(qiáng)再隨機(jī)摸球,問(wèn)他們制定的游戲規(guī)則公平嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明是個(gè)愛(ài)動(dòng)腦筋的同學(xué),在發(fā)現(xiàn)教材中的用方框在月歷中移動(dòng)的規(guī)律后,突發(fā)奇想,將連續(xù)的偶數(shù)2、4、6、8,…排成如下表,并用一個(gè)十字形框架住其中的五個(gè)數(shù),請(qǐng)你仔細(xì)觀(guān)察十字形框架中數(shù)字的規(guī)律,并回答下列問(wèn)題:
十字框中的五個(gè)數(shù)的和與中間的數(shù)16有什么關(guān)系?
設(shè)中間的數(shù)為x,用代數(shù)式表示十字框中的五個(gè)數(shù)的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:求1+2+22+23+24+…+22019的值.
解:設(shè)S=1+2+22+23+24+…+22018+22019,①將等式兩邊同時(shí)乘2,得
2S=2+22+23+24+25+…+22019+22020,②
將②式減去①式,得2S-S=22020-1,
即S=22020-1,
則1+2+22+23+24+…+22019=22020-1.
請(qǐng)你仿照此法計(jì)算:
(1)1+2+22+23+24+…+210;
(2)1+3+32+33+34+…+3n(其中n為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】江南農(nóng)場(chǎng)收割小麥,已知1臺(tái)大型收割機(jī)和3臺(tái)小型收割機(jī)1小時(shí)可以收割小麥1.4公頃,2臺(tái)大型收割機(jī)和5臺(tái)小型收割機(jī)1小時(shí)可以收割小麥2.5公頃.
(1)每臺(tái)大型收割機(jī)和每臺(tái)小型收割機(jī)1小時(shí)收割小麥各多少公頃?
(2)大型收割機(jī)每小時(shí)費(fèi)用為300元,小型收割機(jī)每小時(shí)費(fèi)用為200元,兩種型號(hào)的收割機(jī)一共有10臺(tái),要求2小時(shí)完成8公頃小麥的收割任務(wù),且總費(fèi)用不超過(guò)5400元,有幾種方案?請(qǐng)指出費(fèi)用最低的一種方案,并求出相應(yīng)的費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解題:
按照一定順序排列著的一列數(shù)稱(chēng)為數(shù)列,排在第一位的數(shù)稱(chēng)為第1項(xiàng),記為a1,依次類(lèi)推,排在第n位的數(shù)稱(chēng)為第n項(xiàng),記為an.
一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0).如:數(shù)列1,3,9,27,…為等比數(shù)列,其中a1=1,公比為q=3.
則:(1)等比數(shù)列3,6,12,…的公比q為 ,第4項(xiàng)是 .
(2)如果一個(gè)數(shù)列a1,a2,a3,a3,…是等比數(shù)列,且公比為q,那么根據(jù)定義可得到:
,…… .
∴a2=a1q,a3=a2q=(a1q)q=a1q2,a4=a3q=(a1q2)q= a1q3,……
由此可得:an= (用a1和q的代數(shù)式表示)
(3)若一等比數(shù)列的公比q=2,第2項(xiàng)是10,請(qǐng)求它的第1項(xiàng)與第4項(xiàng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)l1:y=-2x與直線(xiàn)l2:y=kx+b在同一平面直角坐標(biāo)系內(nèi)交于點(diǎn)P .
(1)直接寫(xiě)出不等式-2x>kx+b 的解集 ;
(2)設(shè)直線(xiàn)l2 與x 軸交于點(diǎn)A ,△OAP的面積為12 ,求l2的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,AB=2,∠B=60°,M為AB的中點(diǎn).動(dòng)點(diǎn)P在菱形的邊上從點(diǎn)B出發(fā),沿B→C→D的方向運(yùn)動(dòng),到達(dá)點(diǎn)D時(shí)停止.連接MP,設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,MP 2=y,則表示y與x的函數(shù)關(guān)系的圖象大致為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形ABCD中,P是對(duì)角線(xiàn)BD上的一點(diǎn),點(diǎn)E在AD的延長(zhǎng)線(xiàn)上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC=120°時(shí),連接CE,試探究線(xiàn)段AP與線(xiàn)段CE的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com