【題目】如圖,AB為⊙O的內(nèi)接正多邊形的一邊,已知∠OAB=70°,則這個正多邊形的內(nèi)角和為 .
【答案】1260°
【解析】解:∵OA=OB, ∴∠OAB=∠OBA=70°,
∴∠AOB=40°,
∵AB為⊙O的內(nèi)接正多邊形的一邊,
∴正多邊形的邊數(shù)= =9,
∴這個正多邊形的內(nèi)角和=(9﹣2)×180°=1260°,
所以答案是:1260°.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解多邊形內(nèi)角與外角的相關(guān)知識,掌握多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°,以及對正多邊形和圓的理解,了解圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角;圓的外切四邊形的兩組對邊的和相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在線段BC上任取一點(diǎn)E,連接DE,作EF⊥DE,交直線AB于點(diǎn)F.
(1)若點(diǎn)F與B重合,求CE的長;
(2)若點(diǎn)F在線段AB上,且AF=CE,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程:(x-2)-(4x-1)=4.
【答案】x=-.
【解析】
方程兩邊都乘以6去分母后,去括號,移項(xiàng)合并,將x系數(shù)化為1即可求出解.
去分母得:3(x-2)-2(4x-1)=24,
去括號得:3x-6-8x+2=24,
移項(xiàng)合并得:-5x=28,
解得:x=-.
【點(diǎn)睛】
此題考查了解一元一次方程,其步驟為:去分母,去括號,移項(xiàng)合并,將x系數(shù)化為1,求出解.
【題型】解答題
【結(jié)束】
22
【題目】(1)已知a+b=5,ab=-2,求代數(shù)式(6a-3b-2ab)-(a-8b-ab)的值;
(2)已知2x-y-4=0,求9x27y÷81y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖1是由5個完全相同的正方體搭成的幾何體,現(xiàn)將標(biāo)有E的正方體平移至圖2所示的位置,下列說法中正確的是( )
①左、右兩個幾何體的主視圖相同
②左、右兩個幾何體的俯視圖相同
③左、右兩個幾何體的左視圖相同.
A.①②③
B.②③
C.①②
D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)是一個六角星的紙板,其中六個銳角都為60°,六個鈍角都為120°,每條邊都相等,現(xiàn)將該紙板按圖(2)切割,并無縫隙無重疊地拼成矩形ABCD.若六角星紙板的面積為9 cm2 , 則矩形ABCD的周長為( )
A.18cm
B.8 cm
C.(2 +6)cm
D.(6 +6)cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AC=BC,AB=2,現(xiàn)將一塊三角板的直角頂點(diǎn)放在AB的中點(diǎn)D處,兩直角邊分別與直線AC,直線BC相交于點(diǎn)E,F(xiàn),我們把DE⊥AC時的位置定為起始位置(如圖1),將三角板繞點(diǎn)D順時針方向旋轉(zhuǎn)一個角度α(0°<α<90°).
(1)如圖2,在旋轉(zhuǎn)過程中,當(dāng)點(diǎn)E在線段AC上時,試判別△DEF的形狀,并說明理由;
(2)設(shè)直線ED交直線BC于點(diǎn)G,在旋轉(zhuǎn)過程中,是否存在點(diǎn)G,使得△EFG為等腰三角形?若存在,求出CG的長,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)8﹣(﹣2)
(2)1﹣6+(﹣20)﹣(﹣5)
(3)﹣4×(﹣3)2+5×(﹣2)﹣6
(4)(1﹣+)×(﹣48)
(5)﹣22+[(﹣4)2﹣(1﹣3)×3]
(6)(﹣125)÷(﹣5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:三角形一邊的中線與這邊上的高線之比稱為這邊上的中高比.
(1)直接寫出等腰直角三角形腰上的中高比為 .
(2)已知一個直角三角形一邊上的中高比為5:4,求它的最小內(nèi)角的正切值.
(3)如圖,已知函數(shù)y= (x+4)(x﹣m)與x軸交于A、B兩點(diǎn),與y軸的負(fù)半軸交于點(diǎn)C,對稱軸與x的正半軸交于點(diǎn)D,若△ABC中AB邊上的中高比為5:4,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE切⊙O于點(diǎn)E,AT交⊙O于點(diǎn)M,N,線段OE交AT于點(diǎn)C,OB⊥AT于點(diǎn)B,已知∠EAT=30°,AE=3 ,MN=2 .
(1)求∠COB的度數(shù);
(2)求⊙O的半徑R;
(3)點(diǎn)F在⊙O上( 是劣弧),且EF=5,把△OBC經(jīng)過平移、旋轉(zhuǎn)和相似變換后,使它的兩個頂點(diǎn)分別與點(diǎn)E,F(xiàn)重合.在EF的同一側(cè),這樣的三角形共有多少個?你能在其中找出另一個頂點(diǎn)在⊙O上的三角形嗎?請?jiān)趫D中畫出這個三角形,并求出這個三角形與△OBC的周長之比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com