【題目】如圖,邊長(zhǎng)為的正方形中,為的中點(diǎn),連接交于,連接,過作交的延長(zhǎng)線于,則的長(zhǎng)為________.
【答案】
【解析】
作MN⊥AD,先證明MA=ME,進(jìn)而求出AN=NE=1,利用MN∥CD得: ,
求出MN,在RT△MND中利用勾股定理即可求出DM.
作MN⊥AD垂足為N.
∵四邊形ABCD是正方形,
∴AB=BC=CD=AD,∠ABF=∠CBF,BC∥AD,∠BAD=∠CDA=90°,
∵BF=BF,
∴△BFA≌△BFC,
∴∠BAF=∠BCF=∠CED=∠AEM,
∵∠MAF=∠BAD=90°,
∴∠BAF=∠MAE,
∴∠MAE=∠AEM,
∴MA=ME
∵AE=ED=AD=2,
∴AN=NE=AE=1,
∵∠MNE=∠CDE=90°,
∴MN∥CD,
∴△MNE∽△CDE,
∴=,
∵CD=4,
∴MN=2,
在RT△MND中,∵MN=2,DN=3,
∴DM= = = ,
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線的部分圖象如圖所示,與x軸的一個(gè)交點(diǎn)坐標(biāo)為,拋物線的對(duì)稱軸是下列結(jié)論中:
;;方程有兩個(gè)不相等的實(shí)數(shù)根;拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)為;若點(diǎn)在該拋物線上,則.
其中正確的有
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+x+2與x軸交于A,B兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)C關(guān)于拋物線對(duì)稱軸對(duì)稱的點(diǎn)為D.
(1)求點(diǎn)D的坐標(biāo)及直線AD的解析式;
(2)如圖1,連接CD、AD、BD,點(diǎn)M為線段CD上一動(dòng)點(diǎn),過M作MN∥BD交線段AD于N點(diǎn),點(diǎn)P是y軸上的動(dòng)點(diǎn),當(dāng)△CMN的面積最大時(shí),求△MPN的周長(zhǎng)取得最小值時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,線段AE在第一象限內(nèi)交BD于點(diǎn)E,其中tan∠EAB=,將拋物線向右水平移動(dòng),點(diǎn)A平移后的對(duì)應(yīng)點(diǎn)為點(diǎn)G;將△ABD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后的三角形紀(jì)為△A1BD1,若射線BD1與線段AE的交點(diǎn)為F,連接FG.若線段FG把△ABF分成△AFG和△BFG兩個(gè)三角形,是否存在點(diǎn)G,使得△AFG是直角三角形且△BFG是等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,并回答問題.事實(shí)上,在任何一個(gè)直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方,這個(gè)結(jié)論就是著名的勾股定理.請(qǐng)利用這個(gè)結(jié)論,完成下面活動(dòng):
一個(gè)直角三角形的兩條直角邊分別為,那么這個(gè)直角三角形斜邊長(zhǎng)為____;
如圖①,于,求的長(zhǎng)度;
如圖②,點(diǎn)在數(shù)軸上表示的數(shù)是____請(qǐng)用類似的方法在圖2數(shù)軸上畫出表示數(shù)的點(diǎn)(保留痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法“①凡正方形都相似;②凡等腰三角形都相似;③凡等腰直角三角形都相似;④直角三角形斜邊上的中線與斜邊的比為;⑤兩個(gè)相似多邊形的面積比為,則周長(zhǎng)的比為.”中,正確的個(gè)數(shù)有( )個(gè)
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)將線段分成兩部分,如果,那么稱點(diǎn)為線段的黃金分割點(diǎn).
某研究小組在進(jìn)行課題學(xué)習(xí)時(shí),類似地給出“黃金分割線”的定義:直線將一個(gè)面積為的圖形分成兩部分,這兩部分的面積分別為,,如果,那么稱直線為該圖形的黃金分割線.(如圖)
問題.試在圖的梯形中畫出至少五條黃金分割線,并說明理由.
類似“黃金分割線”得“黃金分割面”定義:截面將一個(gè)體積為的圖形分成體積為V1
、的兩個(gè)圖形,且,則稱直線為該圖形的黃金分割面.
問題:如圖,長(zhǎng)方體中,是線段上的黃金分割點(diǎn),證明經(jīng)過點(diǎn)且平行于平面的截面是長(zhǎng)方體的黃金分割面.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=10,cosB=,點(diǎn)M是AB邊的中點(diǎn),將△ABC繞著點(diǎn)M旋轉(zhuǎn),使點(diǎn)C與點(diǎn)A重合,點(diǎn)A與點(diǎn)D重合,點(diǎn)B與點(diǎn)E重合,得到△DEA,且AE交CB于點(diǎn)P,那么線段CP的長(zhǎng)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系中,點(diǎn),,過點(diǎn)作直線與軸互相垂直,為軸上的一個(gè)動(dòng)點(diǎn),且.
(1)如圖1,若點(diǎn)是第二象限內(nèi)的一個(gè)點(diǎn),且時(shí),求點(diǎn)的坐標(biāo);(用的代數(shù)式表示)
(2)如圖2,若點(diǎn)是第三象限內(nèi)的一個(gè)點(diǎn),設(shè)點(diǎn)的坐標(biāo),求的取值范圍:
(3)如圖3,連接,作的平分線,點(diǎn)、分別是射線與邊上的兩個(gè)動(dòng)點(diǎn),連接、,當(dāng)時(shí),試求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點(diǎn)M為邊BC上一動(dòng)點(diǎn),聯(lián)結(jié)AM并延長(zhǎng)交射線DC于點(diǎn)F,作∠FAE=45°交射線BC于點(diǎn)E、交邊DCN于點(diǎn)N,聯(lián)結(jié)EF.
(1)當(dāng)CM:CB=1:4時(shí),求CF的長(zhǎng).
(2)設(shè)CM=x,CE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域.
(3)當(dāng)△ABM∽△EFN時(shí),求CM的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com