【題目】已知:四邊形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,點E是射線CD上的一個動點(與C、D不重合),將△ADE繞點A順時針旋轉(zhuǎn)120°后,得到△ABE',連接EE'.
(1)如圖1,∠AEE'= °;
(2)如圖2,如果將直線AE繞點A順時針旋轉(zhuǎn)30°后交直線BC于點F,過點E作EM∥AD交直線AF于點M,寫出線段DE、BF、ME之間的數(shù)量關(guān)系;
(3)如圖3,在(2)的條件下,如果CE=2,AE=,求ME的長.
【答案】(1)∠AEE'=30°;
(2)當點E在線段CD上時,;
當點E在CD的延長線上時,
時,;
時,;
時,;
(3).
【解析】
試題(1)根據(jù)旋轉(zhuǎn)地的性質(zhì)易得到△ADE≌△ABE/,∠EAE/=120°,所以∠AEE/=30°.
由于點E是射線CD上一動點,其位置不確定,故應分情況討論:一是當點E在線段CD上時:此時易得;二是點E在CD的延長線上時,仍需考慮多種情況,可以知道,當∠EAD=300時,AE旋轉(zhuǎn)后的直線與BC平行,當∠EAD=900時,AE旋轉(zhuǎn)后的直線與AB共線,而∠EAD不可能為1200,所以應再次細分為三種情況:即當時;當時;當時.
(3)如圖,作于點G, 作于點H.易知四邊形AGHD是矩形和兩個全等的直角三角形;∴點、B、C在一條直線上.繼續(xù)作于Q.于點P. 多次利用勾股定理可得,,;繼而證明Rt△AG E'∽Rt△FA E',根據(jù)相似三角形性質(zhì)可求解.
試題解析:
解:(1) 30°.
當點E在線段CD上時,;
當點E在CD的延長線上,
時,;
時,;
時,.
(3)作于點G, 作于點H.
由AD∥BC,AD=AB=CD,∠BAD=120°,得∠ABC=∠DCB=60°,
易知四邊形AGHD是矩形和兩個全等的直角三角形.則GH="AD" , BG=CH.
∵,
∴點、B、C在一條直線上.設(shè)AD=AB=CD=x,則GH=x,BG=CH=,.
作于Q.在Rt△EQC中,CE="2,",
∴,.
∴E'Q=.
作于點P.
∵△ADE繞點A順時針旋轉(zhuǎn)120°后,得到△ABE'.
∴△A EE'是等腰三角形,.
∴在Rt△AP E'中,E'P=.
∴EE'="2" E'P=.
∴在Rt△EQ E'中,E'Q=.
∴.
∴.
∴,.
∴
在Rt△E'AF中,
∴Rt△AG E'∽Rt△FA E'.
∴
∴.
∴.
由(2)知:.
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某大樓的頂部樹有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°.沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的坡度i=1: ,AB=10米,AE=15米.(i=1: 是指坡面的鉛直高度BH與水平寬度AH的比)
(1)求點B距水平面AE的高度BH;
(2)求廣告牌CD的高度.
(測角器的高度忽略不計,結(jié)果精確到0.1米.參考數(shù)據(jù): 1.414, 1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀探索
知識累計
解方程組
解:設(shè)a﹣1=x,b+2=y,原方程組可變?yōu)?/span>
解方程組得:即所以此種解方程組的方法叫換元法.
(1)拓展提高
運用上述方法解下列方程組:
(2)能力運用
已知關(guān)于x,y的方程組的解為,直接寫出關(guān)于m、n的方程組的解為_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,將矩形ABCD繞點C順時針旋轉(zhuǎn)90°,點B、D分別落在點B′,D′處,且點A,B′,D′在同一直線上,則tan∠DAD′ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A、O、B在一條直線上,將射線OC繞O點順時針方向旋轉(zhuǎn)90°后,得到射線OD,在旋轉(zhuǎn)過程中,射線OC始終在直線AB上方,且OE平分∠AOD.約定,無論∠AOD大小如何,OE都看作是由OA、OD兩邊形成的最小角的平分線.
(1)如圖,當∠AOC=30°時,∠BOD=_________°;
(2)若射線OF平分∠BOC,求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC邊于點D,交AC邊于點E.過點D作⊙O的切線,交AC于點F,交AB的延長線于點G,連接DE.
(1)求證:BD=CD;
(2)若∠G=40°,求∠AED的度數(shù).
(3)若BG=6,CF=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,數(shù)軸上從左到右的三個點A,B,C所對應數(shù)的分別為a,b,c.其中點A、點B兩點間的距離AB的長是2019,點B、點C兩點間的距離BC的長是1000,
(1)若以點C為原點,直接寫出點A,B所對應的數(shù);
(2)若原點O在A,B兩點之間,求|a|+|b|+|b﹣c|的值;
(3)若O是原點,且OB=19,求a+b﹣c的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級數(shù)學興趣小組的同學調(diào)查了若干名家長對“初中學生帶手機上學”現(xiàn)象的看法,統(tǒng)計整理并制作了如下的條形與扇形統(tǒng)計圖,則表示“無所謂”的家長人數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,平行四邊形OABC的頂點A,B的坐標分別為(6,0),(7,3),將平行四邊形OABC繞點O逆時針方向旋轉(zhuǎn)得到平行四邊形OA′B′C′,當點C′落在BC的延長線上時,線段OA′交BC于點E,則線段C′E的長度為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com