【題目】已知點(diǎn)A、O、B在一條直線上,將射線OC繞O點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)90°后,得到射線OD,在旋轉(zhuǎn)過(guò)程中,射線OC始終在直線AB上方,且OE平分∠AOD.約定,無(wú)論∠AOD大小如何,OE都看作是由OA、OD兩邊形成的最小角的平分線.
(1)如圖,當(dāng)∠AOC=30°時(shí),∠BOD=_________°;
(2)若射線OF平分∠BOC,求∠EOF的度數(shù).
【答案】(1)60;(2)45°或135°
【解析】
(1)根據(jù)平角定義即可得出結(jié)論;
(2)分兩種情況討論:①當(dāng)OC、OD都在直線AB上方時(shí);當(dāng)OC在直線AB上方,OD在直線AB下方時(shí).
(1)∵∠AOC=30°,∠COD=90°,∴∠BOD=180°-∠AOC-∠COD=180°-30°-90°=60°.
(2)分兩種情況討論:
①當(dāng)OC、OD都在直線AB上方時(shí),如圖1.設(shè)∠AOC=x,則∠BOC=180°-x.
∵∠COD=90°,∴∠AOD=90°+x,∠BOD=90°-x.
∵OE平分∠AOD,∴∠EOD=∠AOD=(90°+x)=45°+0.5x.
∵OF平分∠BOC,∴∠BOF=∠BOC=(180°-x)=90°-0.5x,∴∠FOD=∠BOF-∠BOD=(90°-0.5x)-(90°-x)=0.5x,∴∠EOF=∠EOD-∠DOF=(45°+0.5x)-0.5x=45°.
②當(dāng)OC在直線AB上方,OD在直線AB下方時(shí),如圖2.
設(shè)∠AOC=x,則∠BOC=180°-x.
∵∠COD=90°,∴∠AOD=360°-90°-x=270°-x,∠BOD=180°-∠AOD=180°-(270°-x)=x-90°.
∵OE平分∠AOD,∴∠EOD=∠AOD=(270°-x)=135°-0.5x.
∵OF平分∠BOC,∴∠BOF=∠BOC=(180°-x)=90°-0.5x,∴∠FOD=∠BOF+∠BOD=(90°-0.5x)+(x-90°)=0.5x,∴∠EOF=∠EOD+∠DOF=(135°-0.5x)+0.5x=135°.
綜上所述:∠EOF的度數(shù)為45°或135°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲、乙、丙三艘輪船從港口O出發(fā),當(dāng)分別行駛到A,B,C處時(shí),經(jīng)測(cè)量得,甲船位于港口的北偏東43°45′方向,乙船位于港口的北偏東76°35′方向,丙船位于港口的北偏西43°45′方向.
(1)求∠BOC的度數(shù);
(2)求∠AOB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為籌備校慶活動(dòng),準(zhǔn)備印制一批校慶紀(jì)念冊(cè),該紀(jì)念冊(cè)每?jī)?cè)需要10張8K大小的紙,其中4張為彩色頁(yè),6張為黑白頁(yè).印制該紀(jì)念冊(cè)的總費(fèi)用由制版費(fèi)和印刷費(fèi)兩部分組成,制版費(fèi)與印數(shù)無(wú)關(guān),價(jià)格為:彩色頁(yè)300元/張,黑白頁(yè)50元/張;印刷費(fèi)與印數(shù)的關(guān)系見(jiàn)表.
印數(shù)a (單位:千冊(cè)) | 1≤a<5 | 5≤a<10 |
彩色。▎挝唬涸/張) | 2.2 | 2.0 |
黑白(單位:元/張) | 0.7 | 0.6 |
(1)直接寫(xiě)出印制這批紀(jì)念冊(cè)的制版費(fèi)為多少元;
(2)若印制6千冊(cè),那么共需多少費(fèi)用?
(3)如印制x(1≤x<10)千冊(cè),所需費(fèi)用為y元,請(qǐng)寫(xiě)出y與x之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】給下面命題的說(shuō)理過(guò)程填寫(xiě)依據(jù).
已知:如圖,直線AB,CD相交于點(diǎn)O,EO⊥CD,垂足為O,OF平分∠BOD,對(duì)∠EOF=∠BOC說(shuō)明理由.
理由:因?yàn)?/span>∠AOC=∠BOD( ),
∠BOF=∠BOD( ),
所以∠BOF=∠AOC( ).
因?yàn)?/span>∠AOC=180°-∠BOC( ),
所以∠BOF=90°-∠BOC.
因?yàn)?/span>EO⊥CD( ),
所以∠COE=90°( )
因?yàn)?/span>∠BOE+∠COE=∠BOC( ),
所以∠BOE=∠BOC-∠COE.
所以∠BOE=∠BOC-90°( )
因?yàn)?/span>∠EOF=∠BOE+∠BOF( )
所以∠EOF=(∠BOC-90°)+(90°∠BOC)( )
所以∠EOF=∠BOC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)用硬紙板制作的長(zhǎng)方體包裝盒展開(kāi)圖,已知它的底面形狀是正方形,高為12cm.
(1)制作這樣的包裝盒需要多少平方厘米的硬紙板?
(2)若1平方米硬紙板價(jià)格為5元,則制作10個(gè)這的包裝盒需花費(fèi)多少錢(qián)?(不考慮邊角損耗)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:四邊形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,點(diǎn)E是射線CD上的一個(gè)動(dòng)點(diǎn)(與C、D不重合),將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)120°后,得到△ABE',連接EE'.
(1)如圖1,∠AEE'= °;
(2)如圖2,如果將直線AE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)30°后交直線BC于點(diǎn)F,過(guò)點(diǎn)E作EM∥AD交直線AF于點(diǎn)M,寫(xiě)出線段DE、BF、ME之間的數(shù)量關(guān)系;
(3)如圖3,在(2)的條件下,如果CE=2,AE=,求ME的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=2x-4
(1)畫(huà)出函數(shù)的圖象;
(2)判斷點(diǎn)A(1,-2),B(2,1)是否在該函數(shù)的圖象上.
(3)已知點(diǎn)A(-2,b)在該函數(shù)圖像上,求b值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知長(zhǎng)方形ABCD在平面直角坐標(biāo)系中的位置如圖所示,將長(zhǎng)方形ABCD沿x軸向左平移到使點(diǎn)C與坐標(biāo)原點(diǎn)重合后,再沿y軸向下平移到使點(diǎn)D與坐標(biāo)原點(diǎn)重合,此時(shí)點(diǎn)A的坐標(biāo)是______,點(diǎn)B的坐標(biāo)是______,點(diǎn)C的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖a是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖a中虛線用剪刀把它均分成四塊小長(zhǎng)方形,然后按圖b的形狀拼成一個(gè)正方形.
(1)請(qǐng)用兩種不同的方法求圖b中陰影部分的面積:
方法1: ____ (只列式,不化簡(jiǎn))
方法2: ______ (只列式,不化簡(jiǎn))
(2)觀察圖b,寫(xiě)出代數(shù)式(m+n)2,(m-n)2,mn之間的等量關(guān)系: ______ ;
(3)根據(jù)(2)題中的等量關(guān)系,解決如下問(wèn)題:若a+b=7,ab=5,
則(a-b)2= ______ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com