【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從友誼體育用品商店一次性購買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同、每個(gè)籃球的價(jià)格相同),若購買3個(gè)籃球和2個(gè)足球共需420元;購買2個(gè)籃球和4個(gè)足球共需440元.
(1)購買一個(gè)籃球、一個(gè)足球各需多少元?
(2)根據(jù)該中學(xué)的實(shí)際情況,需要從該體育用品商店一次性購買足球和籃球共20個(gè).要求購買籃球數(shù)不少于足球數(shù)的2倍,總費(fèi)用不超過1840元,那么這所中學(xué)有哪幾種購買方案?哪種方案所需費(fèi)用最少?
【答案】
(1)解:設(shè)每個(gè)籃球x元,每個(gè)足球y元,
由題意,得: ,
解得: .
答:購買一個(gè)籃球需要100元,一個(gè)足球需要60元.
(2)解:設(shè)購買籃球y個(gè),則購買足球(20﹣y)個(gè),
由題意,得: ,
解得: ≤y≤16.
∵y為整數(shù),
∴有3種方案:①購買籃球14個(gè),足球6個(gè);
②購買籃球15個(gè),足球5個(gè);
③購買籃球16個(gè),足球4個(gè).
∵籃球較貴一些,
∴方案①所需費(fèi)用最低.
【解析】(1)設(shè)每個(gè)籃球x元,每個(gè)足球y元,根據(jù)購買3個(gè)籃球和2個(gè)足球共需420元;購買2個(gè)籃球和4個(gè)足球共需440元,可得出方程組,解出即可;(2)設(shè)購買籃球y個(gè),則購買足球(20﹣y)個(gè),由購買籃球數(shù)不少于足球數(shù)的2倍,總費(fèi)用不超過1840元,可得出不等式組,解出即可.
【考點(diǎn)精析】本題主要考查了一元一次不等式組的應(yīng)用的相關(guān)知識點(diǎn),需要掌握1、審:分析題意,找出不等關(guān)系;2、設(shè):設(shè)未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗(yàn):從不等式組的解集中找出符合題意的答案;6、答:寫出問題答案才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校住校生宿舍有大小兩種寢室若干間,據(jù)統(tǒng)計(jì)該校高一年級男生740人,使用了55間大寢室和50間小寢室,正好住滿;女生730人,使用了大寢室50間和小寢室55間,也正好住滿.求該校的大小寢室每間各住多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥DC,∠B=90°,F為DC上一點(diǎn),且FC=AB,E為AD上一點(diǎn),EC交AF于點(diǎn)G.
(1)求證:四邊形ABCF是矩形;
(2)若ED=EC,求證:EA=EG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線相交于點(diǎn)O,點(diǎn)E,F,G,H分別是AO,BO,CO,DO的中點(diǎn),請問四邊形EFGH是矩形嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩工程隊(duì)承包一項(xiàng)工程,如果甲工程隊(duì)單獨(dú)施工,恰好如期完成;如果乙工程隊(duì)單獨(dú)施工就要超過6個(gè)月才能完成,現(xiàn)在甲、乙兩隊(duì)先共同施工4個(gè)月,剩下的由乙隊(duì)單獨(dú)施工,則恰好如期完成.
(1)問原來規(guī)定修好這條公路需多少長時(shí)間?
(2)現(xiàn)要求甲、乙兩個(gè)工程隊(duì)都參加這項(xiàng)工程,但由于受到施工場地條件限制,甲、乙兩工程隊(duì)不能同時(shí)施工.已知甲工程隊(duì)每月的施工費(fèi)用為4萬元,乙工程隊(duì)每月的施工費(fèi)用為2萬元.為了結(jié)算方便,要求:甲、乙的施工時(shí)間為整數(shù)個(gè)月,不超過15個(gè)月完成.當(dāng)施工費(fèi)用最低時(shí),甲、乙各施工了多少個(gè)月?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A(0,a)、B(b, 0),且a、b滿足: ,點(diǎn)D為x正半軸上一動點(diǎn)
(1)求A、B兩點(diǎn)的坐標(biāo)
(2)如圖,∠ADO的平分線交y軸于點(diǎn)C,點(diǎn) F為線段OD上一動點(diǎn),過點(diǎn)F作CD的平行線交y軸于點(diǎn)H,且∠AFH=45°, 判斷線段AH、FD、AD三者的數(shù)量關(guān)系,并予以證明
(3)以AO為腰,A為頂角頂點(diǎn)作等腰△ADO,若∠DBA=30°,直接寫出∠DAO的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將ABCD的邊AB延長到點(diǎn)E,使BE=AB,連接DE,交邊BC于點(diǎn)F.
(1)求證:△BEF≌△CDF.
(2)連接BD,CE,若∠BFD=2∠A,求證四邊形BECD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,已知AB=CD,點(diǎn)E、F分別為AD、BC的中點(diǎn),延長BA、CD,分別交射線FE于P、Q兩點(diǎn).求證:∠BPF=∠CQF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC⊥BC,CD⊥AB,DE⊥AC,∠1與∠2互補(bǔ),判斷HF與AB是否垂直,并說明理由(填空)
解:垂直.理由如下:
∵DE⊥AC,AC⊥BC,
∴∠AED=∠ACB=90°( 垂直的意義 ).
∴DE∥BC( ① )
∴∠1=∠DCB( ② )
∵∠1與∠2互補(bǔ)(已知).
∴∠DCB與∠2互補(bǔ)
∴ ③ (同旁內(nèi)角互補(bǔ),兩直線平行)
∴∠BFH=∠CDB( ④ )
∵CD⊥AB,
∴∠CDB=90°.
∴∠BFH= ⑤ ( ⑥ ).
∴HF⊥AB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com