【題目】下列命題中,真命題有( 。偻詢(nèi)角互補;②長度為2、3、5的三條線段可以構(gòu)成三角形;③平方根、立方根是它本身的數(shù)是01;④和﹣|2|互為相反數(shù);⑤45;⑥在同一平面內(nèi),如果ab,ac.那么bc

A.0B.1C.2D.3

【答案】C

【解析】

根據(jù)平行線的性質(zhì)、三角形三邊關(guān)系定理、平方根、立方根、絕對值以及無理數(shù)估算分別判斷即可

解:①兩直線平行,同旁內(nèi)角互補,故原命題是假命題;

②∵2+3=5,∴不能構(gòu)成三角形,故原命題是假命題;

③平方根是它本身的數(shù)是0,立方根是它本身的數(shù)是±10,故原命題是假命題;

,﹣|2|=-2,它們相等,故原命題是假命題;

⑤∵161925,∴45,是真命題;

⑥在同一平面內(nèi),如果ab,ac.那么bc,是真命題,

所以真命題有2個,

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列各式:

=-1;

;

.

1)根據(jù)前面各式的規(guī)律可得:

.

.

2)請用上面的結(jié)論進行計算:

(答案可含有冪的形式表示);

②若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一兒童服裝商店在銷售中發(fā)現(xiàn):某品牌童裝平均每天可售出20件,每件盈利40元.為了迎接“六·一”兒童節(jié),商店決定采取適當(dāng)?shù)慕祪r措施,擴大銷售量,增加盈利,盡快減少庫存.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件童裝降價1元,那么平均每天就可多售出2件.要想平均每天銷售這種童裝上盈利1200元,那么每件童裝應(yīng)降價多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖∠AOB120°,把三角板60°的角的頂點放在O處.轉(zhuǎn)動三角板(其中OC邊始終在∠AOB內(nèi)部),OE始終平分∠AOD

1)(特殊發(fā)現(xiàn))如圖1,若OC邊與OA邊重合時,求出∠COE與∠BOD的度數(shù).

2)(類比探究)如圖2,當(dāng)三角板繞O點旋轉(zhuǎn)的過程中(其中OC邊始終在∠AOB內(nèi)部),∠COE與∠BOD的度數(shù)比是否為定值?若為定值,請求出這個定值;若不為定值,請說明理由.

3)(拓展延伸)如圖3,在轉(zhuǎn)動三角板的過程中(其中OC邊始終在∠AOB內(nèi)部),若OP平分∠COB,請畫出圖形,直接寫出∠EOP的度數(shù)(無須證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△ABC中,AB=AC,過AB上一點D作DE∥AC交BC于點E,以E為頂點,ED為一邊,作∠DEF=∠A,另一邊EF交AC于點F.

(1)求證:四邊形ADEF為平行四邊形;

(2)當(dāng)點D為AB中點時,判斷ADEF的形狀;

(3)延長圖①中的DE到點G,使EG=DE,連接AE,AG,F(xiàn)G,得到圖②,若AD=AG,判斷四邊形AEGF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解初三年級1000名學(xué)生的身體健康情況,從該年級隨機抽取了若干名學(xué)生,將他們按體重(均為整數(shù),單位:kg)分成五組(A39.546.5;B46.553.5;C53.560.5;D60.567.5E67.574.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.

解答下列問題:

1)這次抽樣調(diào)查的樣本容量是 ,并補全頻數(shù)分布直方圖;

2C組學(xué)生的頻率為 ,在扇形統(tǒng)計圖中D組的圓心角是 度;

3)請你估計該校初三年級體重超過60kg的學(xué)生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,BE平分ABC交AD于點E,DF平分ADC交BC于點F

1ABE≌△CDF

2BDEF,則判斷四邊形EBFD是什么特殊四邊形,請證明你的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機傳給其他三人中的某一人.求第二次傳球后球回到甲手里的概率.(請用“畫樹狀圖”的方式給出分析過程)

(2)如果甲跟另外n(n≥2)個人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是 (請直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為∠AOB的邊OA上一點,OC=6,N為邊OB上異于點O的一動點,P是線段CN上一點,過點P分別作PQ∥OA交OB于點Q,PM∥OB交OA于點M.

(1)若∠AOB=60,OM=4,OQ=1,求證:CN⊥OB.

(2)當(dāng)點N在邊OB上運動時,四邊形OMPQ始終保持為菱形.

①問: 的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請說明理由.

②設(shè)菱形OMPQ的面積為S1,△NOC的面積為S2,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案