【題目】如圖1,已知直線y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過(guò)A、B兩點(diǎn),與x軸交于另一個(gè)點(diǎn)C,對(duì)稱軸與直線AB交于點(diǎn)E,拋物線頂點(diǎn)為D.
(1)求拋物線的解析式;
(2)在第三象限內(nèi),F為拋物線上一點(diǎn),以A、E、F為頂點(diǎn)的三角形面積為3,求點(diǎn)F的坐標(biāo);
(3)點(diǎn)P從點(diǎn)D出發(fā),沿對(duì)稱軸向下以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),以P、B、C為頂點(diǎn)的三角形是直角三角形?直接寫(xiě)出所有符合條件的t值.
【答案】(1)y=﹣x2﹣2x+3
(2)點(diǎn)F的坐標(biāo)為(,)
(3)當(dāng)t為秒或2秒或3秒或秒時(shí),以P、B、C為頂點(diǎn)的三角形是直角三角形。
【解析】
試題(1)先由直線AB的解析式為y=x+3,求出它與x軸的交點(diǎn)A、與y軸的交點(diǎn)B的坐標(biāo),再將A、B兩點(diǎn)的坐標(biāo)代入y=﹣x2+bx+c,運(yùn)用待定系數(shù)法即可求出拋物線的解析式。
∵y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,
∴當(dāng)y=0時(shí),x=﹣3,即A點(diǎn)坐標(biāo)為(﹣3,0),當(dāng)x=0時(shí),y=3,即B點(diǎn)坐標(biāo)為(0,3)。
將A(﹣3,0),B(0,3)代入y=﹣x2+bx+c,得
,解得。
∴拋物線的解析式為y=﹣x2﹣2x+3。
(2)設(shè)第三象限內(nèi)的點(diǎn)F的坐標(biāo)為(m,﹣m2﹣2m+3),運(yùn)用配方法求出拋物線的對(duì)稱軸及頂點(diǎn)D的坐標(biāo),再設(shè)拋物線的對(duì)稱軸與x軸交于點(diǎn)G,連接FG,根據(jù)S△AEF=S△AEG+S△AFG﹣S△EFG=3,列出關(guān)于m的方程,解方程求出m的值,進(jìn)而得出點(diǎn)F的坐標(biāo)。
如圖1,設(shè)第三象限內(nèi)的點(diǎn)F的坐標(biāo)為(m,﹣m2﹣2m+3),
則m<0,﹣m2﹣2m+3<0。
∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴對(duì)稱軸為直線x=﹣1,頂點(diǎn)D的坐標(biāo)為(﹣1,4)。
設(shè)拋物線的對(duì)稱軸與x軸交于點(diǎn)G,連接FG,
則G(﹣1,0),AG=2。
∵直線AB的解析式為y=x+3,
∴當(dāng)x=﹣1時(shí),y=﹣1+3=2。∴E點(diǎn)坐標(biāo)為(﹣1,2)。
∵S△AEF=S△AEG+S△AFG﹣S△EFG
=×2×2+×2×(m2+2m﹣3)﹣×2×(﹣1﹣m)=m2+3m,
∴以A、E、F為頂點(diǎn)的三角形面積為3時(shí),m2+3m=3,
解得m1=,m2=(舍去)。
當(dāng)m=時(shí),﹣m2﹣2m+3=﹣m2﹣3m+m+3=﹣3+m+3=m=。
∴點(diǎn)F的坐標(biāo)為(,)。
(3)設(shè)P點(diǎn)坐標(biāo)為(﹣1,n),.
∵B(0,3),C(1,0),∴BC2=12+32=10。
分三種情況:
①如圖2,如果∠PBC=90°,那么PB2+BC2=PC2,
即(0+1)2+(n﹣3)2+10=(1+1)2+(n﹣0)2,
化簡(jiǎn)整理得6n=16,解得n=。
∴P點(diǎn)坐標(biāo)為(﹣1,)。
∵頂點(diǎn)D的坐標(biāo)為(﹣1,4),
∴PD=4﹣=。
∵點(diǎn)P的速度為每秒1個(gè)單位長(zhǎng)度,∴t1=秒。
②如圖3,如果∠BPC=90°,那么PB2+PC2=BC2,
即(0+1)2+(n﹣3)2+(1+1)2+(n﹣0)2=10,
化簡(jiǎn)整理得n2﹣3n+2=0,解得n=2或1。
∴P點(diǎn)坐標(biāo)為(﹣1,2)或(﹣1,1),
∵頂點(diǎn)D的坐標(biāo)為(﹣1,4),
∴PD=4﹣2=2或PD=4﹣1=3。
∵點(diǎn)P的速度為每秒1個(gè)單位長(zhǎng)度,∴t2=2秒,t3=3秒。
③如圖4,如果∠BCP=90°,那么BC2+PC2=PB2,
即10+(1+1)2+(n﹣0)2=(0+1)2+(n﹣3)2,
化簡(jiǎn)整理得6n=﹣4,解得n=。
∴P點(diǎn)坐標(biāo)為(﹣1,)。
∵頂點(diǎn)D的坐標(biāo)為(﹣1,4),∴PD=4+=。
∵點(diǎn)P的速度為每秒1個(gè)單位長(zhǎng)度,
∴t4=秒。
綜上所述,當(dāng)t為秒或2秒或3秒或秒時(shí),以P、B、C為頂點(diǎn)的三角形是直角三角形。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,延長(zhǎng)BA至E,使AE=1,連接EC、ED,則sin∠CED=( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲、乙、丙、丁4名同學(xué)中隨機(jī)抽取同學(xué)參加學(xué)校的座談會(huì)
(1)抽取一名同學(xué), 恰好是甲的概率為
(2) 抽取兩名同學(xué),求甲在其中的概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A1,A2,…,A2011在函數(shù)y=x2位于第二象限的圖象上,點(diǎn)B1,B2,…,B2011在函數(shù)y=x2位于第一象限的圖象上,點(diǎn)C1,C2,…,C2011在y軸的正半軸上,若四邊形OA1C1B1、C1A2C2B2,…,C2010A2011C2011B2011都是正方形,則正方形C2010A2011C2011B2011的邊長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在中,,,為外角的平分線,.
(1)求證:四邊形為矩形;
(2)當(dāng)與滿足什么數(shù)量關(guān)系時(shí),四邊形是正方形?并給予證明
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點(diǎn),點(diǎn)D與點(diǎn)O重合,DF⊥AC于點(diǎn)M,DE⊥BC于點(diǎn)N,試判斷線段OM與ON的數(shù)量關(guān)系,并說(shuō)明理由.
探究展示:小宇同學(xué)展示出如下正確的解法:
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線,
∵CA=CB,∴CO是∠ACB的角平分線.(依據(jù)1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據(jù)2)
反思交流:
(1)上述證明過(guò)程中的“依據(jù)1”和“依據(jù)2”分別是指:
依據(jù)1:
依據(jù)2:
(2)你有與小宇不同的思考方法嗎?請(qǐng)寫(xiě)出你的證明過(guò)程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點(diǎn)D落在BA的延長(zhǎng)線上,FD的延長(zhǎng)線與CA的延長(zhǎng)線垂直相交于點(diǎn)M,BC的延長(zhǎng)線與DE垂直相交于點(diǎn)N,連接OM、ON,試判斷線段OM、ON的數(shù)量關(guān)系與位置關(guān)系,并寫(xiě)出證明過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了方便廣大游客到昆明參觀游覽,鐵道部門(mén)臨時(shí)增開(kāi)了一列南寧——昆明的直達(dá)快車,已知南寧、昆明兩站的路程為828千米,一列普通快車與一列直達(dá)快車都由南寧開(kāi)往昆明,直達(dá)快車的平均速度是普通快車平均速度的1.5倍,直達(dá)快車比普通快車后出發(fā)2小時(shí),而先于普通快車4小時(shí)到達(dá)昆明,分別求出兩車的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】Rt△ABC中,AB=AC,點(diǎn)D為BC中點(diǎn).∠MDN=900,∠MDN繞點(diǎn)D旋轉(zhuǎn),DM、DN分別與邊AB、AC交于E、F兩點(diǎn).下列結(jié)論
①(BE+CF)=BC,②,③AD·EF,④AD≥EF,⑤AD與EF可能互相平分,
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,對(duì)角線AC、BD相交于點(diǎn)O,問(wèn)△AOB與△COD是否相似?有一位同學(xué)解答下:
∵AD∥BC,
∴∠ADO=∠CBO,∠DAO=∠BCO.
∴△AOD∽△BOC.
∴ .
又∵∠AOB=∠DOC,
∴△AOB∽△COD.
請(qǐng)判斷這位同學(xué)的解答是否正確并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com