【題目】問題情境:將一副直角三角板(Rt△ABCRt△DEF)按圖1所示的方式擺放,其中∠ACB=90°CA=CB,∠FDE=90°,OAB的中點,點D與點O重合,DF⊥AC于點MDE⊥BC于點N,試判斷線段OMON的數(shù)量關(guān)系,并說明理由.

探究展示:小宇同學展示出如下正確的解法:

解:OM=ON,證明如下:

連接CO,則COAB邊上中線,

∵CA=CB∴CO∠ACB的角平分線.(依據(jù)1

∵OM⊥AC,ON⊥BC,∴OM=ON.(依據(jù)2

反思交流:

1)上述證明過程中的依據(jù)1”依據(jù)2”分別是指:

依據(jù)1

依據(jù)2

2)你有與小宇不同的思考方法嗎?請寫出你的證明過程.

拓展延伸:

3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點D落在BA的延長線上,FD的延長線與CA的延長線垂直相交于點M,BC的延長線與DE垂直相交于點N,連接OM、ON,試判斷線段OM、ON的數(shù)量關(guān)系與位置關(guān)系,并寫出證明過程.

【答案】1)等腰三角形三線合一(或等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合);角平分線上的點到角的兩邊距離相等;(2)見解析;(3)見解析

【解析】

1)根據(jù)等腰三角形的性質(zhì)和角平分線性質(zhì)得出即可;

2)證OMA≌△ONBAAS),即可得出答案;

3)求出矩形DMCN,得出DM=CNMOC≌△NOBSAS),推出OM=ON,∠MOC=NOB,得出∠MOC-CON=NOB-CON,求出∠MON=BOC=90°,即可得出答案.

1)解:依據(jù)1為:等腰三角形三線合一(或等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合),依據(jù)2為:角平分線上的點到角的兩邊距離相等.

2)證明:∵CA=CB

∴∠A=B,

OAB的中點,

OA=OB

DFAC,DEBC

∴∠AMO=BNO=90°,

∵在OMAONB

∴△OMA≌△ONBAAS),

OM=ON

3)解:OM=ON,OMON.理由如下:

如圖2,連接OC,

∵∠ACB=DNB,∠B=B

∴△BCA∽△BND,

,

AC=BC

DN=NB

∵∠ACB=90°,

∴∠NCM=90°=DNC,

MCDN,

又∵DFAC,

∴∠DMC=90°,

即∠DMC=MCN=DNC=90°,

∴四邊形DMCN是矩形,

DN=MC,

∵∠B=45°,∠DNB=90°,

∴∠3=B=45°

DN=NB,

MC=NB,

∵∠ACB=90°,OAB中點,AC=BC,

∴∠1=2=45°=BOC=OB(斜邊中線等于斜邊一半),

MOCNOB

,

∴△MOC≌△NOBSAS),

OM=ON,∠MOC=NOB,

∴∠MOC-CON=NOB-CON

即∠MON=BOC=90°,

OMON

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知代數(shù)式n≠2).

1)①用含n的代數(shù)式表示m;

②若m、n均取整數(shù),求m、n的值.

2)當na、b時,m對應的值為c、d 當-2ba時,試比較c、d的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC= 90°,D是邊AC上的一點,AB= AD,連接BD, EBC上的一點,以BE為直徑的0經(jīng)過點D.

(1)求證: ACO的切線:

(2)若∠A=60°,O的半徑為2,求CE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)的某種產(chǎn)品按質(zhì)量分為10個檔次,第1檔次(最低檔次)的產(chǎn)品一天能生產(chǎn)95件,每件利潤6元.每提高一個檔次,每件利潤增加2元,但一天產(chǎn)量減少5件.

1)若生產(chǎn)第檔次的產(chǎn)品一天的總利潤為元(其中為正整數(shù),且1≤≤10),求出關(guān)于的函數(shù)關(guān)系式;

2若生產(chǎn)第x檔次的產(chǎn)品一天的總利潤為1120元,求該產(chǎn)品的質(zhì)量檔次.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知直線y=x+3x軸交于點A,與y軸交于點B拋物線y=﹣x2+bx+c經(jīng)過A、B兩點,與x軸交于另一個點C,對稱軸與直線AB交于點E,拋物線頂點為D

1)求拋物線的解析式;

2)在第三象限內(nèi),F為拋物線上一點,以A、EF為頂點的三角形面積為3,求點F的坐標;

3)點P從點D出發(fā),沿對稱軸向下以每秒1個單位長度的速度勻速運動,設運動的時間為t秒,當t為何值時,以PB、C為頂點的三角形是直角三角形?直接寫出所有符合條件的t值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,雙曲線(x>0)上有一點A(1,5),過點A的直線y=mx+nx軸交于點C(6,0).

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)連接OA、OB,求AOB的面積;

(3)根據(jù)圖象直接寫出在第一象限內(nèi)反比例函數(shù)值大于一次函數(shù)值時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1)將長方形紙片ABCD的一邊CD沿著CQ向下折疊,使點D落在邊AB上的點P處.

1)試判斷線段CQPD的關(guān)系,并說明理由;

2)如圖(2),若AB=CD=5,AD=BC=3.求AQ的長;

3)如圖(2),BC=3,取CQ的中點M,連接MDPM,若MDPM,求AQAB+BC)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC內(nèi)接于⊙O,AD、AE分別平分∠BAC和△BAC的外角∠BAF,且分別交圓于點D、F,連接DE,CD,DE與BC相交于點G.

(1)求證:DE是△ABC的外接圓的直徑;

(2)設OG=3,CD=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某人走進一家商店,進門付l角錢,然后在店里購物花掉當時他手中錢的一半,走出商店付1角錢;之后,他走進第二家商店付1角錢,在店里花掉當時他手中錢的一半, 走出商店付1角錢;他又進第三家商店付l角錢,在店里花掉當時他手中錢的一半,出店付1角錢;最后他走進第四家商店付l角錢,在店里花掉當時他手中錢的一半, 出店付1角錢,這時他一分錢也沒有了.該人原有錢的數(shù)目是________.

查看答案和解析>>

同步練習冊答案