【題目】從甲、乙、丙、丁4名同學(xué)中隨機(jī)抽取同學(xué)參加學(xué)校的座談會(huì)
(1)抽取一名同學(xué), 恰好是甲的概率為
(2) 抽取兩名同學(xué),求甲在其中的概率。
【答案】(1);(2).
【解析】
(1)由從甲、乙、丙、丁4名同學(xué)中抽取同學(xué)參加學(xué)校的座談會(huì),直接利用概率公式求解即可求得答案;
(2)利用列舉法可得抽取2名,可得:甲乙、甲丙、甲丁、乙丙、乙丁、丙丁共6種等可能的結(jié)果,甲在其中的有3種情況,然后利用概率公式求解即可求得答案.
(1)隨機(jī)抽取1名學(xué)生,可能出現(xiàn)的結(jié)果有4種,即甲、乙、丙、丁,并且它們出現(xiàn)的可能性相等,
恰好抽取1名恰好是甲的結(jié)果有1種,
所以抽取一名同學(xué),恰好是甲的概率為,
故答案為:;
(2)隨機(jī)抽取2名學(xué)生,可能出現(xiàn)的結(jié)果有6種,即甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,并且它們出現(xiàn)的可能性相等,
恰好抽取2名甲在其中的結(jié)果有3種,即甲乙、甲丙、甲丁,
故抽取兩名同學(xué),甲在其中的概率為=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在△ABC中,AC的垂直平分線與∠ABC的角平分線交于點(diǎn)D,
(1)如圖1,判斷∠BAD和∠BCD之間的數(shù)量關(guān)系,并說明理由;
(2)如圖2,若∠DAC=60°時(shí),探究線段AB,BC,BD之間的數(shù)量關(guān)系,并說明理由;
(3)如圖3,在(2)的條件下,DA和CB的延長(zhǎng)線交于點(diǎn)E,點(diǎn)F是CD上一點(diǎn)且DF=AE,連接AF交BD于點(diǎn)G,若CE=9,求DG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點(diǎn)D,O為AB上一點(diǎn),經(jīng)過點(diǎn)A,D的⊙O分別交AB,AC于點(diǎn)E,F(xiàn),連接OF交AD于點(diǎn)G.
(1)求證:BC是⊙O的切線;
(2)設(shè)AB=x,AF=y,試用含x,y的代數(shù)式表示線段AD的長(zhǎng);
(3)若BE=8,sinB=,求DG的長(zhǎng),
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形ABCD中,AB=,BC=3,在BC邊上取兩點(diǎn)E、F(點(diǎn)E在點(diǎn)F的左邊),以EF為邊所作等邊△PEF,頂點(diǎn)P恰好在AD上,直線PE、PF分別交直線AC于點(diǎn)G、H.
(1)求△PEF的邊長(zhǎng);
(2)若△PEF的邊EF在線段CB上移動(dòng),試猜想:PH與BE有何數(shù)量關(guān)系?并證明你猜想的結(jié)論;
(3)若△PEF的邊EF在射線CB上移動(dòng)(分別如圖②和圖③所示,CF>1,P不與A重合),(2)中的結(jié)論還成立嗎?若不成立,直接寫出你發(fā)現(xiàn)的新結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC是邊長(zhǎng)為4的等邊三角形,點(diǎn)O在邊AB上,⊙O過點(diǎn)B且分別與邊AB,BC相交于點(diǎn)D,E,EF⊥AC,垂足為F.
(1)求證:直線EF是⊙O的切線;
(2)當(dāng)直線DF與⊙O相切時(shí),求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC= 90°,D是邊AC上的一點(diǎn),AB= AD,連接BD, E是BC上的一點(diǎn),以BE為直徑的⊙0經(jīng)過點(diǎn)D.
(1)求證: AC是⊙O的切線:
(2)若∠A=60°,⊙O的半徑為2,求CE長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的四個(gè)頂點(diǎn)都在⊙O上,E是⊙O上的一點(diǎn).
(1)如圖①,若點(diǎn)E在上,F是DE上的一點(diǎn),DF=BE.求證:△ADF≌△ABE;
(2)在(1)的條件下,小明還發(fā)現(xiàn)線段DE、BE、AE之間滿足等量關(guān)系:DE﹣BE=AE.請(qǐng)你說明理由;
(3)如圖②,若點(diǎn)E在上.寫出線段DE、BE、AE之間的等量關(guān)系.(不必證明)
第26題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線y=x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn),與x軸交于另一個(gè)點(diǎn)C,對(duì)稱軸與直線AB交于點(diǎn)E,拋物線頂點(diǎn)為D.
(1)求拋物線的解析式;
(2)在第三象限內(nèi),F為拋物線上一點(diǎn),以A、E、F為頂點(diǎn)的三角形面積為3,求點(diǎn)F的坐標(biāo);
(3)點(diǎn)P從點(diǎn)D出發(fā),沿對(duì)稱軸向下以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),以P、B、C為頂點(diǎn)的三角形是直角三角形?直接寫出所有符合條件的t值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形.Rt△ABC的頂點(diǎn)均在格點(diǎn)上,建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(﹣4,1),點(diǎn)B的坐標(biāo)為(﹣1,1).
(1)先將Rt△ABC向右平移5個(gè)單位,再向下平移1個(gè)單位后得到Rt△A1B1C1.試在圖中畫出圖形Rt△A1B1C1,并寫出A1的坐標(biāo);
(2)將Rt△A1B1C1繞點(diǎn)A1順時(shí)針旋轉(zhuǎn)90°后得到Rt△A2B2C2,試在圖中畫出圖形Rt△A2B2C2.并計(jì)算Rt△A1B1C1在上述旋轉(zhuǎn)過程中C1所經(jīng)過的路程以及Rt△A1B1C1掃過的面積。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com