【題目】小林在使用筆記本電腦時,為了散熱,他將電腦放在散熱架CAD上,忽略散熱架和電腦的厚度,側(cè)面示意圖如圖1所示,已知電腦顯示屏OB與底板OA的夾角為135°,OB=OA=25cm,OE⊥AD于點E,OE=12.5cm.
(1)求∠OAE的度數(shù);
(2)若保持顯示屏OB與底板OA的135°夾角不變,將電腦平放在桌面上如圖2中的所示,則顯示屏頂部比原來頂部B大約下降了多少?(參考數(shù)據(jù):結(jié)果精確到0.1cm.參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,,)
【答案】(1)∠OAE=30°;(2)19.1cm
【解析】
(1)根據(jù)題中數(shù)據(jù),在△OEA中,將∠OAE的正弦值求出,從而得出∠OAE的度數(shù).
(2)過點O作MN⊥OE,過點B作BH⊥MN于點H,過點B'作B'F⊥AD,交AD的延長線于點F. 通過∠BOH的度數(shù),計算出BH的長度,在△B'O'F中,求出∠B'O'F的度數(shù),從而求出B'F的長度,利用OE和BH的長度之和得出B點距離桌面的高度,最后求出下降的高度.
解:(1)∵OE⊥AD于點E,OA=OB=25cm,OE=12.5cm,
在Rt△OEA中,.
∴∠OAE=30°.
(2)如圖,過點O作MN⊥OE,過點B作BH⊥MN于點H,過點B'作B'F⊥AD,交AD的延長線于點F.
∵∠BOA=135°,∠AOE=60°,∠MOE=90°
∴∠BOH=360°-∠BOA -∠AOE -∠MOE =75°
∵在Rt△BOH中,
∴
=25×sin75°≈25×0.97=24.25(cm)
∵=135°
∴=45°
∵在Rt△中,
∴=25×≈25×0.705=17.625(cm)
∴BH+OE-B'F≈24.25+12.5-17.625=19.125≈19.1(cm)
答:顯示屏頂部比原來頂部B大約下降了19.1cm.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P為平行四邊形ABCD的對稱中心,以P為圓心作圓,過P的任意直線與圓相交于點M,N.則線段BM,DN的大小關(guān)系是( 。
A. BM>DN B. BM<DN C. BM=DN D. 無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的口袋中裝有4個完全相同的小球,分別標有數(shù)字1、2、3、4,另有一個可以自由旋轉(zhuǎn)的圓盤.被分成面積相等的3個扇形區(qū),分別標有數(shù)字1、2、3(如圖所示).小穎和小亮想通過游戲來決定誰代表學校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一個人轉(zhuǎn)動圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.
(1)用樹狀圖或列表法求出小穎參加比賽的概率;
(2)你認為該游戲公平嗎?請說明理由;若不公平,請修改該游戲規(guī)則,使游戲公平.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知D是等邊△ABC邊AB上的一點,現(xiàn)將△ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC和BC上.如果AD:DB=1:2,則CE:CF的值為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點E為邊DC上一點,且DE∶EC=3∶1,連接AE并延長,與BC的延長線交于點G,AE與BD交于點F,則△GEC的面積與△DEF的面積之比為( )
A.1∶3B.3∶7C.4∶21D.7∶27
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若整數(shù)a使關(guān)于x的分式方程=2有整數(shù)解,且使關(guān)于x的不等式組至少有4個整數(shù)解,則滿足條件的所有整數(shù)a的和是( 。
A.﹣14B.﹣17C.﹣20D.﹣23
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平行四邊形ABCD中,點E是AD邊上的點,連接BE.
(1)如圖1,若BE平分∠ABC,BC=8,ED=3,求平行四邊形ABCD的周長;
(2)如圖2,點F是平行四邊形外一點,FB=CD.連接BF、CF,CF與BE相交于點G,若∠FBE+∠ABC=180°,點G是CF的中點,求證:2BG+ED=BC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)中,函數(shù)y與自變量x的部分對應(yīng)值如下表:
(1)求該二次函數(shù)的表達式;
(2)該二次函數(shù)圖像關(guān)于x軸對稱的圖像所對應(yīng)的函數(shù)表達式 ;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將小正方形AEFG繞大正方形ABCD的頂點A順時針旋轉(zhuǎn)一定的角度α(其中0°≤α≤90°),連接BG、DE相交于點O,再連接AO、BE、DG.王凱同學在探究該圖形的變化時,提出了四個結(jié)論:
①BG=DE;②BG⊥DE;③∠DOA=∠GOA;④S△ADG=S△ABE,其中結(jié)論正確的個數(shù)有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com