【題目】已知一次函數(shù)的圖象交軸和軸于點;另一個一次函數(shù)的圖象交軸和軸于點,且兩個函數(shù)的圖象交于點

1)當(dāng),為何值時,的圖象重合;

2)當(dāng)的面積為時,求線段的長.

【答案】1a=2,b=2;(2ED=28

【解析】

1)把A1,4)代入y1=ax+b求得a+b=4,得到b=4-a,于是得到結(jié)論;

2)根據(jù)題意,需要分成兩種情況進(jìn)行第一種情況,如圖2,第二種情況,如圖3,根據(jù)函數(shù)解析式得到B,C,D,E,求得BC的長度,根據(jù)三角形的面積列方程即可得到結(jié)論.

解:(1)∵的圖象過點,

a+b=4,

b=4-a,

y1=ax+4-a),y2=4-ax+a,

y1y2的圖象重合,

a=4-a,

a=2,b=2

即當(dāng)a=2,b=2時,y1y2的圖象重合;

2)第一種情況,如圖2,

根據(jù)題意易求得:B,0),C0),D0,),E0,a),

解得:;

經(jīng)檢驗,,是原分式方程的解;

,,,,

,;

第二種情況,如圖3

B,0),C,0),D0,),E0,),

,

解得:,

經(jīng)檢驗,,是原分式方程的解;

,,,,

;

綜上所述,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.如圖,P是邊長為1的正方形ABCD對角線AC上一動點(PA、C不重合),點E在射線BC上,且PE=PB.設(shè)AP=x,PBE的面積為y. 則能夠正確反映之間的函數(shù)關(guān)系的圖象是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是正方形ABCD外一點,點F是線段AE上一點,EBF是等腰直角三角形,其中EBF=90°,連接CE、CF.

(1)求證:△ABF≌△CBE;

(2)判斷CEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)與正比例函數(shù)、常數(shù),且,在同一坐標(biāo)系中的大致圖象是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.

(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為________;

(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1所示,在RtABC中,∠ACB=90°,AC=BC,點D在斜邊AB上,點E在直角邊BC上,若∠CDE=45°,求證:△ACD∽△BDE.

(2)如圖2所示,在矩形ABCD中,AB=4cm,BC=10cm,點EBC上,連接AE,過點EEFAECD(或CD的延長線)于點F.

①若BE:EC=1:9,求CF的長;

②若點F恰好與點D重合,請在備用圖上畫出圖形,并求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,邊上的高,過點,過點,交于點交于點,連結(jié)

1)求證:四邊形是矩形;

2)求四邊形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①有一個角是的等腰三角形是等邊三角形;②如果三角形的一個外角平分線平行三角形的一邊,那么這個三角形是等腰三角形;③三角形三邊的垂直平分線的交點與三角形三個頂點的距離相等;④有兩個角相等的等腰三角形是等邊三角形.其中正確的個數(shù)有(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織學(xué)生參加安全知識競賽(滿分為分),測試結(jié)束后,張老師從七年級名學(xué)生中隨機(jī)地抽取部分學(xué)生的成績繪制了條形統(tǒng)計圖,如圖所示.試根據(jù)統(tǒng)計圖提供的信息,回答下列問題:

1)張老師抽取的這部分學(xué)生中,共有 名男生, 名女生;

2)張老師抽取的這部分學(xué)生中,女生成績的眾數(shù)是

3)若將不低于分的成績定為優(yōu)秀,請估計七年級名學(xué)生中成績?yōu)閮?yōu)秀的學(xué)生人數(shù)大約是多少.

查看答案和解析>>

同步練習(xí)冊答案