【題目】已知:如圖,直線l經(jīng)過點A(﹣2,0)和點B(0,1),點Mx軸上,過點Mx軸的垂線交直線l于點C,若OM=2OA,則經(jīng)過點C的反比例函數(shù)表達式為( 。

A.yB.yC.yD.y

【答案】C

【解析】

設(shè)直線l的解析式為ykx+b,列方程組求得yx+1,根據(jù)已知條件得到點C(3,4),設(shè)反比例函數(shù)表達式為y,把C的坐標代入即可得到結(jié)論.

設(shè)直線l的解析式為:ykx+b,

∵直線l經(jīng)過點A(2,0)和點B(01),

,

解得:,

∴直線l的解析式為:yx+1,

∵點A(2,0)

OA2

OM2OA,

OM4

∴點C的橫坐標為4,

x4時,y3,

∴點C(34),

設(shè)反比例函數(shù)表達式為y

m12,

∴反比例函數(shù)表達式為y,

故選C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中拋物線經(jīng)過原點,且與直線交于則、兩點.

1)求直線和拋物線的解析式;

2)點在拋物線上,解決下列問題:

①在直線下方的拋物線上求點,使得的面積等于20;

②連接,作軸于點,若相似,請直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E的斜邊AB上一點,以AE為直徑的與邊BC相切于點D,交邊AC于點F,連結(jié)AD

1)求證:AD平分

2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,且AB2CD,EF分別是AB,BC的中點,EFBD交于點H

1)求證:四邊形DEBC是平行四邊形;

2)若BD6,求DH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某體育用品商店購進了足球和排球共20個,一共花了1360元,進價和售價如表:

足球

排球

進價(元/個)

80

50

售價(元/個)

95

60

l)購進足球和排球各多少個?

2)全部銷售完后商店共獲利潤多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點AB分別在x軸和y軸的正半軸上,以線段AB為邊在第一象限作等邊△ABC,,且CAy軸.

1)若點C在反比例函數(shù)的圖象上,求該反比例函數(shù)的解析式;

2)在(1)中的反比例函數(shù)圖象上是否存在點N,使四邊形ABCN是菱形,若存在請求出點N坐標,若不存在,請說明理由.

3)點P在第一象限的反比例函數(shù)圖象上,當四邊形OAPB的面積最小時,求出P點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】俄羅斯足球世界杯點燃了同學們對足球運動的熱情,某學校劃購買甲、乙兩種品牌的足球供學生使用.已知用1000 元購買甲種足球的數(shù)量和用1600元購買乙種足球的數(shù)量相同,甲種足球的單價比乙種足球的單價少30元.

1)求甲、乙兩種品牌的足球的單價各是多少元?

2)學枝準備一次性購買甲、乙兩種品牌的足球共25個,但總費用不超過1610元,那么這所學校最多購買多少個乙種品牌的足球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)計算:(﹣13+|6|×21;

2)解不等式:x,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某游泳池每次換水前后水的體積基本保持不變,當該游泳池以每小時300立方米的速度放水時,經(jīng)3小時能將池內(nèi)的水放完.設(shè)放水的速度為x立方米/時,將池內(nèi)的水放完需y小時.已知該游泳池每小時的最大放水速度為350立方米

1)求y關(guān)于x的函數(shù)表達式.

2)若該游泳池將放水速度控制在每小時200立方米至250立方米(含200立方米和250立方米),求放水時間y的范圍.

3)該游泳池能否在2.5小時內(nèi)將池內(nèi)的水放完?請說明理由.

查看答案和解析>>

同步練習冊答案