【題目】如圖1,在平畫(huà)直角坐標(biāo)系中,直線交軸于點(diǎn),交軸于點(diǎn),將直線沿軸向右平移2個(gè)單位長(zhǎng)度交軸于,交軸于,交直線于.
(1)直接寫(xiě)出直線的解析式為______,______.
(2)在直線上存在點(diǎn),使是的中線,求點(diǎn)的坐標(biāo);
(3)如圖2,在軸正半軸上存在點(diǎn),使,求點(diǎn)的坐標(biāo).
【答案】(1),22;(2);(3)
【解析】
(1)根據(jù)平移規(guī)律“上加下減、左加右減”進(jìn)行計(jì)算可得到平移后的解析式,再分別求出A,B,C的坐標(biāo),即可計(jì)算出22;
(2)作軸于,軸于,易得,則,
再將x=4代入得到y=11,所以;
(3)在軸正半軸上取一點(diǎn),使,由外角性質(zhì)和等腰三角形的性質(zhì)得出,再用勾股定理求得OP的長(zhǎng),即可得出答案.
解:(1)直線沿x軸向右平移2個(gè)單位長(zhǎng)度,則
y=-2(x-2)-7
=-2x-3
將和聯(lián)立,得
解得
易得
故答案為:,22;
(2)作軸于,軸于,
∵
∴,,
∵為的中線,
∴,
∵,
∴,
∴,
在中,
當(dāng)時(shí),,
∴.
(3)由(1)得,,
∴, ,
在軸正半軸上取一點(diǎn),使,
∵,
∴,
∴,
∵,
∴,
∴,
在中,由勾股定理可得:,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知BD是矩形ABCD的對(duì)角線.
(1)用直尺和圓規(guī)作線段BD的垂直平分線,分別交AD、BC于E、F(保留作圖痕跡,不寫(xiě)作法和證明).
(2)連結(jié)BE,DF,問(wèn)四邊形BEDF是什么四邊形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=8,BC=6.CD⊥AB于點(diǎn)D.點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿線段AB向終點(diǎn)B運(yùn)動(dòng).在運(yùn)動(dòng)過(guò)程中,以點(diǎn)P為頂點(diǎn)作長(zhǎng)為2,寬為1的矩形PQMN,其中PQ=2,PN=1,點(diǎn)Q在點(diǎn)P的左側(cè),MN在PQ的下方,且PQ總保持與AC垂直.設(shè)P的運(yùn)動(dòng)時(shí)間為t(秒)(t>0),矩形PQMN與△ACD的重疊部分圖形面積為S(平方單位).
(1)求線段CD的長(zhǎng);
(2)當(dāng)矩形PQMN與線段CD有公共點(diǎn)時(shí),求t的取值范圍;
(3)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),求S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,tan∠BAC=. 點(diǎn)D在邊AC上(不與A,C重合),連結(jié)BD,F為BD中點(diǎn).
(1)若過(guò)點(diǎn)D作DE⊥AB于E,連結(jié)CF、EF、CE,如圖1.設(shè),則k= ;
(2)若將圖1中的△ADE繞點(diǎn)A旋轉(zhuǎn),使得D、E、B三點(diǎn)共線,點(diǎn)F仍為BD中點(diǎn),如圖2所示.求證:BE-DE=2CF;
(3)若BC=6,點(diǎn)D在邊AC的三等分點(diǎn)處,將線段AD繞點(diǎn)A旋轉(zhuǎn),點(diǎn)F始終為BD中點(diǎn),求線段CF長(zhǎng)度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊AB=20,面積為320,∠BAD<90°,⊙O與邊AB,AD都相切,AO=10,則⊙O的半徑長(zhǎng)等于( )
A.5 B.6 C.2 D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是∠AOB的平分線上一點(diǎn),EC⊥OA,ED⊥OB,垂足分別是C,D.下列結(jié)論中正確的有( 。
(1)ED=EC;(2)OD=OC;(3)∠ECD=∠EDC;(4)EO平分∠DEC;(5)OE⊥CD;(6)直線OE是線段CD的垂直平分線.
A. 3個(gè)B. 4個(gè)C. 5個(gè)D. 6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩地相距400千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地的路程y(千米)與所用時(shí)間x(小時(shí))之間的函數(shù)關(guān)系,折線BCD表示轎車離甲地的路程y(千米)與x(小時(shí))之間的函數(shù)關(guān)系,根據(jù)圖象解答下列問(wèn)題:
(1)求線段CD對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)求E點(diǎn)的坐標(biāo),并解釋E點(diǎn)的實(shí)際意義;
(3)若已知轎車比貨車晚出發(fā)2分鐘,且到達(dá)乙地后在原地等待貨車,則當(dāng)x= 小時(shí),貨車和轎車相距30千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用一條24cm的細(xì)繩圍成一個(gè)等腰三角形。
(1)如果腰長(zhǎng)是底邊的2倍,那么各邊的長(zhǎng)是多少?
(2)能圍成有一邊長(zhǎng)為4cm的等腰三角形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】出租車司機(jī)小王星期天上午營(yíng)運(yùn)時(shí)是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天上午所接八位乘客的行車?yán)锍蹋▎挝唬?/span>):-3,+6,-1,-2,+4,-2,+5,-4.
問(wèn):(1)將最后一位乘客送到目的地時(shí),小王在什么位置?
(2)若汽車耗油量為,這天上午小王接送乘客,出租車共耗油多少升?
(3)若出租車的起步價(jià)為8元,起步里程為(包括),超過(guò)部分每千米1.5元,則小王這天上午共得車費(fèi)多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com