【題目】如圖,在ABC中,∠ACB90°,AC8BC6CDAB于點D.點P從點A出發(fā),以每秒1個單位長度的速度沿線段AB向終點B運動.在運動過程中,以點P為頂點作長為2,寬為1的矩形PQMN,其中PQ2PN1,點Q在點P的左側(cè),MNPQ的下方,且PQ總保持與AC垂直.設(shè)P的運動時間為t(秒)(t0),矩形PQMNACD的重疊部分圖形面積為S(平方單位).

1)求線段CD的長;

2)當(dāng)矩形PQMN與線段CD有公共點時,求t的取值范圍;

3)當(dāng)點P在線段AD上運動時,求St的函數(shù)關(guān)系式.

【答案】1CD;(2≤t≤;(3)當(dāng)0t時,S;當(dāng)≤t≤時,S2;當(dāng)t≤時,S=-t2+t-

【解析】

1)由勾股定理得出AB,ABC的面積得出ACBCABCD,即可得出CD的長;

2)分兩種情形:①當(dāng)點N在線段CD上時,如圖1所示,利用相似三角形的性質(zhì)求解即可.②當(dāng)點Q在線段CD上時,如圖2所示,利用相似三角形的性質(zhì)求解即可.

3)首先求出點Q落在AC上的運動時間t,再分三種情形:①當(dāng)0t時,重疊部分是矩形PHYN,如圖4所示,②當(dāng)≤t≤時,重合部分是矩形PQMN,SPQPN2.③當(dāng)t≤時,如圖5中重疊部分是五邊形PQMJI,分別求解即可.

1)∵∠ACB90°,AC8,BC6

AB,

SABCACBCABCD,

ACBCABCD,即:8×610×CD,

CD

2)在RtADC中,AD,BDABAD10,

當(dāng)點N在線段CD上時,如圖1所示:

∵矩形PQMNPQ總保持與AC垂直,

PNAC,

∴∠NPD=∠CAD,

∵∠PDN=∠ADC,

∴△PDN∽△ADC

,即:,

解得:PD,

tADPD,

當(dāng)點Q在線段CD上時,如圖2所示:

PQ總保持與AC垂直,

PQBC,△DPQ∽△DBC,

,即:

解得:DP ,

tAD+DP,

∴當(dāng)矩形PQMN與線段CD有公共點時,t的取值范圍為≤t≤;

3)當(dāng)QAC上時,如圖3所示:

PQ總保持與AC垂直,

PQBC,△APQ∽△ABC

,即:,

解得:AP

當(dāng)0t時,重疊部分是矩形PHYN,如圖4所示:

PQBC,

∴△APH∽△ABC,

,即:,

PH

SPHPN;

當(dāng)≤t≤時,重合部分是矩形PQMN,SPQPN2

當(dāng)t≤時,如圖5中重疊部分是五邊形PQMJI,

SS矩形PNMQ-SJIN2- t-[1--t]-t2+t-

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】概念學(xué)習(xí):規(guī)定:求若干個相同有理數(shù)(均不為0)的除法運算叫做除方,如,等,類比有理數(shù)的乘方,我們把記作,讀作“2的圈3次方,記作,讀作的圈4次方,一般地,把記作讀作“a的圈n次方

初步探究:

1)直接寫出計算結(jié)果________,________

2)關(guān)于除方,下列說法不正確的是________

A.任何非零數(shù)的圈2次方都等于1

B.對于任何正整數(shù)n,

C.

D.負數(shù)的圈奇次方結(jié)果是負數(shù),負數(shù)的圈偶次方結(jié)果是正數(shù)

深入思考:

我們知道有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?

1)試一試:將下列運算結(jié)果直接寫成冪的形式:______;____________

2)想一想:將一個非零有理數(shù)a的圈n次方寫成冪的形式為________

3)算一算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

某些代數(shù)恒等式可用一些卡片拼成的圖形的面積來解釋.例如,圖①可以解釋,因此,我們可以利用這種方法對某些多項式進行因式分解.

根據(jù)閱讀材料回答下列問題:

1)如圖②所表示的因式分解的恒等式是________________________.

2)現(xiàn)有足夠多的正方形和長方形卡片(如圖③),試畫出一個用若干張1號卡片、2號卡片和3號卡片拼成的長方形(每兩張卡片之間既不重疊,也無空隙),使該長方形的面積為,并利用你畫的長方形的面積對進行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩座建筑物的水平距離,從甲的頂部處測得乙的頂部處的俯角為48°,測得底部處的俯角為58°,求乙建筑物的高度.(參考數(shù)據(jù):,,.結(jié)果取整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著粵港澳大灣區(qū)建設(shè)的加速推進,廣東省正加速布局以5G等為代表的戰(zhàn)略性新興產(chǎn)業(yè),據(jù)統(tǒng)計,目前廣東5G基站的數(shù)量約1.5萬座,計劃到2020年底,全省5G基站數(shù)是目前的4倍,到2022年底,全省5G基站數(shù)量將達到17.34萬座。

1)計劃到2020年底,全省5G基站的數(shù)量是多少萬座?;

2)按照計劃,求2020年底到2022年底,全省5G基站數(shù)量的年平均增長率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點內(nèi)任意一點,,點和點分別是射線和射線上的動點周長的最小值是,則的度數(shù)是( )

A. 25度 B. 30度 C. 35度 D. 40度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,的平分線AECD于點FBC的延長線于點E

1)求證:;

2)連接BF、AC、DE,當(dāng)時,求證:四邊形ACED是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平畫直角坐標系中,直線軸于點,交軸于點,將直線沿軸向右平移2個單位長度交軸于,交軸于,交直線.

1)直接寫出直線的解析式為______,______.

2)在直線上存在點,使的中線,求點的坐標;

3)如圖2,在軸正半軸上存在點,使,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準備在一個廣場上種植甲、乙兩種花卉.經(jīng)市場調(diào)查,甲種花卉的種植費用(元)與種植面積之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費用為每平方米100.

(1)直接寫出當(dāng)時,的函數(shù)關(guān)系式;

(2)廣場上甲、乙兩種花卉的種植面積共,若甲種花卉的種植面積不少于,且不超過乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植費用最少?最少總費用為多少元?

查看答案和解析>>

同步練習(xí)冊答案