【題目】
已知:等邊三角形ABC
(1)如圖1,P為等邊△ABC外一點(diǎn),且∠BPC=120°.試猜想線段BP、PC、AP之間的數(shù)量關(guān)系,并證明你的猜想;
(2)如圖2,P為等邊△ABC內(nèi)一點(diǎn),且∠APD=120°.求證:PA+PD+PC>BD
【答案】(1)猜想:AP=BP+PC,證明見解析;(2)證明見解析.
【解析】
(1)AP=BP+PC,理由是延長(zhǎng)BP至E,使PE=PC,連接CE,由∠BPC=120°,推出等邊△CPE,得到CP=PE=CE,∠PCE=60°,根據(jù)已知等邊△ABC,推出AC=BC,∠ACP=∠BCE,根據(jù)三角形全等的判定推出△ACP≌△BCE,得出AP=BE即可求出結(jié)論;
(2)在AD外側(cè)作等邊△AB′D,由(1)得PB′=AP+PD,根據(jù)三角形的三邊關(guān)系定理得到PA+PD+PC>CB′,再證△AB′C≌△ADB,根據(jù)全等三角形的性質(zhì)推出CB′=BD即可.
(1)猜想:AP=BP+PC,
證明:延長(zhǎng)BP至E,使PE=PC,連接CE,
∵∠BPC=120°
∴∠CPE=60°又PE=PC,
∴△CPE為等邊三角形,
∴CP=PE=CE,∠PCE=60°,
∵△ABC為等邊三角形,
∴AC=BC,∠BCA=60°
∴∠ACB=∠PCE
∴∠ACB+∠BCP=∠PCE+∠BCP
∴∠ACP=∠BCE,
∴△ACP≌△BCE(SAS)
∴AP=BE,
∵BE=BO+PE
∴AP=BP+PC
(2)證明:在AD外側(cè)作等邊△AB’D,
則點(diǎn)P在三角形AB’D外,連接PB’,B’C,
∵∠APD=120°
∴由(1)得PB’=AP+PD,
在△PB’C中,有PB’+PC’>CB’,
∴PA+PB+PC>CB’,
∵△AB’D、△ABC是等邊三角形,
∴AC=AB,AB’=AD
∠BAD=∠CAB’
∴△AB’C≌△ADB
∴CB’=BD,
∴PA+PD+PC>BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(x﹣3)(x﹣2)=|m|.
(1)求證:對(duì)于任意實(shí)數(shù)m,方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若方程的一個(gè)根是1,求m的值及方程的另一個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A,B分別在x,y軸上,點(diǎn)C是OB的中點(diǎn),BE,CD都與x軸平行,BD⊥AB,∠ABO=30°.
(1)判斷△OBD的形狀;
(2)若A(-3,0),BE=6,求證OE=AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=的圖象如圖所示,則以下結(jié)論:①m<0;②在每個(gè)分支上y隨x的增大而增大;③若點(diǎn)A(-1,a),點(diǎn)B(2,b)在圖象上,則a <b;④若點(diǎn)P(x,y)在圖象上,則點(diǎn)P1(-x,y)也在圖象上.其中正確的個(gè)數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例反數(shù)y=(x>0)的圖象如圖所示,點(diǎn)B在圖象上,連接OB并延長(zhǎng)到點(diǎn)A,使AB=OB,過點(diǎn)A作AC∥y軸交y=(x>0)的圖象于點(diǎn)C,連接BC、OC,S△BOC=3,則k=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠3,CD∥EF,試說明∠1=∠4.請(qǐng)將過程填寫完整.
解:∵∠1=∠3,
又∠2=∠3(_______),
∴∠1=____,
∴______∥______(_______),
又∵CD∥EF,
∴AB∥_____,
∴∠1=∠4(兩直線平行,同位角相等).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空并完成以下證明:
已知:點(diǎn)P在直線CD上,∠BAP+∠APD=180°,∠1=∠2.
求證:AB∥CD,∠E=∠F.
證明:∵∠BAP+∠APD=180°,(已知)
∴AB∥ .( )
∴∠BAP= .( )
又∵∠1=∠2,(已知)
∠3= ﹣∠1,
∠4= ﹣∠2,
∴∠3= (等式的性質(zhì))
∴AE∥PF.( )
∴∠E=∠F.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD內(nèi)作∠EAF=45°,AE交BC于點(diǎn)E,AF交CD于點(diǎn)F,連接EF,過點(diǎn)A作AH⊥EF,垂足為H,將△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△ABG,若BE=2,DF=3,則AH的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示.有下列結(jié)論:①b2-4ac<0;②ab>0;③a-b+c=0;④4a+b=0;⑤當(dāng)y=2時(shí),x只能等于0.其中正確的是( )
A. ①④ B. ③④ C. ②⑤ D. ③⑤
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com