【題目】如圖,已知直線AB∥DF,∠D+∠B=180°,
(1)求證:DE∥BC;
(2)如果∠AMD=75°,求∠AGC的度數(shù).

【答案】
(1)證明:∵AB∥DF,

∴∠D+∠BHD=180°,

∵∠D+∠B=180°,

∴∠B=∠DHB,

∴DE∥BC


(2)解:∵DE∥BC,∠AMD=75°,

∴∠AGB=∠AMD=75°,

∴∠AGC=180°﹣∠AGB=180°﹣75°=105°


【解析】
【考點精析】根據(jù)題目的已知條件,利用平行線的判定與性質的相關知識可以得到問題的答案,需要掌握由角的相等或互補(數(shù)量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數(shù)量關系)的結論是平行線的性質.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明要測量河內(nèi)小島B到河邊公路AD的距離,在點A處測得∠BAD=37°,沿AD方向前進150米到達點C,測得∠BCD=45°. 求小島B到河邊公路AD的距離.

(參考數(shù)據(jù):sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,矩形ABCD的面積為128cm2 , 它的兩條對角線交于點O1 , 以AB、AO1為兩邊鄰作平行四邊形ABC1O1 , 平行四邊形ABC1O1的對角線交于點O2 , 同樣以AB、AO2為兩鄰邊作平行四邊形ABC2O2 , …,依此類推,則平行四邊形ABC7O7的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學九(1)班為了了解全班學生喜歡球類活動的情況,采取全面調查的方法,從足球、乒乓球、籃球、排球等四個方面調查了全班學生的興趣愛好,根據(jù)調查的結果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:

(1)九(1)班的學生人數(shù)為40,并把條形統(tǒng)計圖補充完整;

(2)扇形統(tǒng)計圖中m=10,n=20,表示“足球”的扇形的圓心角是72度;

(3)排球興趣小組4名學生中有3男1女,現(xiàn)在打算從中隨機選出2名學生參加學校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學生恰好是1男1女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】湘西自治州風景優(yōu)美,物產(chǎn)豐富,一外地游客到某特產(chǎn)專營店,準備購買精加工的豆腐乳和獼猴桃果汁兩種盒裝特產(chǎn).若購買3盒豆腐乳和2盒獼猴桃果汁共需180元;購買1盒豆腐乳和3盒獼猴桃果汁共需165元.
(1)請分別求出每盒豆腐乳和每盒獼猴桃果汁的價格;
(2)該游客購買了4盒豆腐乳和2盒獼猴桃果汁,共需多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中xOy中,拋物線的頂點在x軸上.

(1)求拋物線的表達式;

(2)點Q是x軸上一點,

①若在拋物線上存在點P,使得∠POQ=45°,求點P的坐標;

②拋物線與直線y=2交于點E,F(xiàn)(點E在點F的左側),將此拋物線在點E,F(xiàn)(包含點E和點F)之間的部分沿x軸平移n個單位后得到的圖象記為G,若在圖象G上存在點P,使得∠POQ=45°,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】農(nóng)民張大伯因病住院,手術費為a元,其它費用為b.由于參加農(nóng)村合作醫(yī)療,

手術費報銷85%,其它費用報銷60%,則張大伯此次住院可報銷 .(用代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】看圖填空:已知如圖,AD⊥BC于D,EG⊥BC與G,∠E=∠1,求證:AD平分∠BAC.
證明:∵AD⊥BC于D,EG⊥BC于G(
∴∠ADC=90°,∠EGC=90°(
∴∠ADC=∠EGC
∴AD∥EG(
∴∠1=∠2(
∠E=∠3(
又∵∠E=∠1(
∴∠2=∠3
∴AD平分∠BAC().

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一條拋物線的對稱軸是x1且與x軸有惟一的公共點,并且開口方向向下,則這條拋物線的解析式是_____(任寫一個).

查看答案和解析>>

同步練習冊答案