如圖,已知點G是梯形的中位線上任意一點,若梯形的面積為20cm2,則圖中陰影部分的面積為
5
本題考查的是梯形中位線的意義。梯形的面積為中位與高的乘積,而圖中的陰影面積可看作是以中位為底,梯形高的一半為高的三角形面積。故為梯形面積的,為20×=5.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長是4,∠DAC的平分線交DC于點E,點P、Q分別是邊AD和AE上的動點(兩動點都不與端點重合).
(1)PQ+DQ的最小值是       ;
(2)說出PQ+DQ取得最小值時,點P、點Q的位置,并在圖8中畫出;
(3)請對(2)中你所給的結(jié)論進行證明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,將邊長為12cm的正方形紙片ABCD折疊,使得點A落在邊CD上的E點,折痕為MN,若MN的長為13cm,則CE的長為(     )
A.6B.7C.8D.10

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在梯形中,,對角線平分,的平分線分別是的中點.
小題1:求證:
小題2:當滿足怎樣的數(shù)量關(guān)系時,?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,把一個長方形紙片沿EF折疊后,點D、C分別落在D1、C1的位置.若∠EFB=65°,則∠BFC1=  ▲  °。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在四邊形ABCD中,,,AB=AD=10cm,BC=8cm.點P從點A出發(fā),以每秒3cm的速度沿折線ABCD方向運動,點Q從點D出發(fā),以每秒2cm的速度沿線段DC方向向點C運動.已知動點P、Q同時發(fā),當點Q運動到點C時,P、Q運動停止,設(shè)運動時間為

小題1:求CD的長;
小題2:當四邊形PBQD為平行四邊形時,求四邊形PBQD的周長;
小題3:在點P、點Q的運動過程中,是否存在某一時刻,使得的面積為20,若存在,請求出所有滿足條件的的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,正方形ABCD中,點E、F分別在邊BC、CD上且AE=EF=FA,下列結(jié)論:① ②CE=CF ③∠AEB=750 ④BE+DF=EF  ⑤其中正確的是             (只填寫序號)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

等腰梯形ABCD中,AB∥DC,AD=BC=8,AB=10,CD=6,則梯形ABCD的面積是   (    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

數(shù)學課上,張老師出示了問題:如圖1,四邊形ABCD是正方形,點E是邊BC的中點,∠AEF = 90°,且EF交正方形外角∠DCG的平行線CF于點F , 求證:AE=EF .經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點M,連結(jié)ME,則AM = EC,
易證△AME≌△ECF,所以AE = EF .   在此基礎(chǔ)上,同學們作了進一步的研究:
小題1:小穎提出:如圖2,如果把“點E是邊BC的中點”改為“點E是邊BC上(除B,C外)的任意一點”,其它條件不變,那么結(jié)論“AE = EF ”仍然成立,你認為小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由
小題2:小華提出:如圖3,點E是BC的延長線上(除C點外)的任意一點,其他條件不變,結(jié)論“AE = EF ”仍然成立. 你認為小華的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由.

查看答案和解析>>

同步練習冊答案