【題目】如圖,點D是⊙O的直徑CA延長線上一點,點B在⊙O上,且∠DBA=∠BCD.
(1)根據你的判斷:BD是⊙O的切線嗎?為什么?.
(2)若點E是劣弧BC上一點,AE與BC相交于點F,且△BEF的面積為10,cos∠BFA=,那么,你能求出△ACF的面積嗎?若能,請你求出其面積;若不能,請說明理由.
【答案】(1)BD是⊙O的切線,理由見解析;(2)見解析.
【解析】
(1)BD是⊙O的切線.先連接OB,由于AC是直徑,那么∠ABC=90°,于是∠1+∠C=90°,而OA=OB,可得∠1=∠2,結合∠3=∠C,易得∠2+∠3=90°,從而可證DB是⊙O的切線;
(2)由于cos∠BFA=,那么,利用圓周角定理可知∠E=∠C,∠4=∠5,易證△EBF∽△CAF,于是,從而易求△ACF的面積.
(1)BD是⊙O的切線.
理由:如圖所示,連接OB,
∵AC是⊙O的直徑,
∴∠ABC=90°,
∴∠1+∠C=90°,
∵OA=OB,
∴∠1=∠2,
∴∠2+∠C=90°,
∵∠3=∠C,
∴∠2+∠3=90°,
∴DB是⊙O的切線;
(2)在Rt△ABF中,
∵cos∠BFA=,
∴,
∵∠E=∠C,∠4=∠5,
∴△EBF∽△CAF,
∴,
即,
解之得:S△ACF=22.5.
科目:初中數學 來源: 題型:
【題目】某商場有一個可以自由轉動的圓形轉盤(如圖).規(guī)定:顧客購物100元以上可以獲得一次轉動轉盤的機會,當轉盤停止時,指針落在哪一個區(qū)域就獲得相應的獎品(指針指向兩個扇形的交線時,當作指向右邊的扇形).下表是活動進行中的一組統計數據:
轉動轉盤的次數n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“鉛筆”的次數m | 68 | 111 | 136 | 345 | 546 | 701 |
落在“鉛筆”的頻率 (結果保留小數點后兩位) | 0.68 | 0.74 | 0.68 | 0.69 | 0.68 | 0.70 |
(1)轉動該轉盤一次,獲得鉛筆的概率約為_______;(結果保留小數點后一位)
(2)鉛筆每只0.5元,飲料每瓶3元,經統計該商場每天約有4000名顧客參加抽獎活動,請計算該商場每天需要支出的獎品費用;
(3)在(2)的條件下,該商場想把每天支出的獎品費用控制在3000元左右,則轉盤上“一瓶飲料”區(qū)域的圓心角應調整為______度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)圖象的一部分如圖所示,其對稱軸為x=2,與x軸的一個交點是(﹣1,0),有以下結論:①abc>0;②4a﹣2b+c<0;③4a+b=0④拋物線與x軸的另一個交點是(5,0)⑤若點(﹣3,y1)(﹣6,y2)都在拋物線上,則y1<y2.其中正確的是_____.(只填序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若拋物線y=x2﹣3x+c與y軸的交點為(0,2),則下列說法正確的是( 。
A. 拋物線開口向下
B. 拋物線與x軸的交點為(﹣1,0),(3,0)
C. 當x=1時,y有最大值為0
D. 拋物線的對稱軸是直線x=
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,拋物線y=mx2+(1﹣2m)x+1﹣3m(m是常數).
(Ⅰ)當m=1時,求該拋物線與x軸的公共點的坐標;
(Ⅱ)拋物線與x軸相交于不同的兩點A,B.
①求m的取值范圍;
②無論m取何值,該拋物線都經過非坐標軸上的定點P,當<m≤8時,求△PAB面積的最大值,并求出相對應的m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點B、C、D都在⊙O上,過點C作AC∥BD交OB延長線于點A,連接CD,且∠CDB=∠OBD=30°,DB=cm.
(1)求證:AC是⊙O的切線;
(2)求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結果保留π)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=90°,AB=12 cm,AD=8 cm,BC=22 cm,AB為⊙O的直徑,動點P從點A開始沿AD邊向點D以1 cm/s的速度運動,動點Q從點C開始沿CB邊向點B以2 cm/s的速度運動,P,Q分別從點A,C同時出發(fā).當其中一動點到達終點時,另一個動點也隨之停止運動.設運動時間為t s.當t為何值時,PQ與⊙O相切?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4cm,以正方形的一邊BC為直徑在正方形ABCD內作半圓,過A作半圓的切線,與半圓相切于F點,與DC相交于E點,則△ADE的面積為_______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com