【題目】小明做用頻率估計概率的試驗時,根據(jù)統(tǒng)計結(jié)果,繪制了如圖所示的折線統(tǒng)計圖,則符合這一結(jié)果的試驗最有可能的是( 。

A. 任意買一張電影票,座位號是2的倍數(shù)的概率

B. 一副去掉大小王的撲克牌,洗勻后,從中任抽一張牌的花色是紅桃

C. 拋一個質(zhì)地均勻的正方體骰子,落下后朝上的面點數(shù)是3

D. 一個不透明的袋子中有4個白球、1個黑球,它們除了顏色外都相同,從中抽到黑球

【答案】C

【解析】

根據(jù)統(tǒng)計圖可知,試驗結(jié)果在0.17附近波動,即其概率P0.17,計算四個選項的概率,約為0.17者即為正確答案.

A、任意買一張電影票,座位號是2的倍數(shù)的概率為,故A選項錯誤;

B、一副去掉大小王的撲克牌,洗勻后,從中任抽一張牌的花色是紅桃的概率是,故B選項錯誤;

C、拋一個質(zhì)地均勻的正方體骰子,朝上的面點數(shù)是3的概率是0.17,故C選項正確;

D、一個不透明的袋子中有4個白球、1個黑球,它們除了顏色外都相同,從中抽到黑球的概率為,故D選項錯誤,

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,M的半徑為2,圓心M的坐標(biāo)為(3,4),點PM上的任意一點,PAPB,且PA、PBx軸分別交于AB兩點,若點A、點B關(guān)于原點O對稱,則AB的最小值為( 。

A. 3B. 4C. 6D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有紅、黃兩個盒子,紅盒子中裝有編號分別為1、2、3、5的四個紅球,黃盒子中裝有編號為1、2、3的三個黃球.甲、乙兩人玩摸球游戲,游戲規(guī)則為:甲從紅盒子中每次摸出一個小球,乙從黃盒子中每次摸出一個小球,若兩球編號之和為奇數(shù),則甲勝,否則乙勝.

(1)試用列表或畫樹狀圖的方法,求甲獲勝的概率;

(2)請問這個游戲規(guī)則對甲、乙雙方公平嗎?若公平,請說明理由;若不公平,試改動紅盒子中的一個小球的編號,使游戲規(guī)則公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=5BC=6,∠BAC的平分線交BC于點D,點MN分別是邊ADAB上的動點,連接BM、MN,則BM+MN的最小值為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】央視經(jīng)典詠流傳開播以來受到社會廣泛關(guān)注,我市也在各個學(xué)校開展了傳承經(jīng)典的相關(guān)主題活動戲曲進(jìn)校園.某校對此項活動的喜愛情況進(jìn)行了隨機調(diào)查,對收集的信息進(jìn)行統(tǒng)計,繪制了下面兩副尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖所提供的信息解答下列問題:

圖中A表示很喜歡,B表示喜歡,C表示一般,D表示不喜歡

1)被調(diào)查的總?cè)藬?shù)是   人,扇形統(tǒng)計圖中B部分所對應(yīng)的扇形圓心角的度數(shù)為   ,并補全條形統(tǒng)計圖;

2)若該校共有學(xué)生1800人,請根據(jù)上述調(diào)查結(jié)果估計該校學(xué)生中A類有多少人;

3)在A5人中,剛好有3個女生2個男生,從中隨機抽取兩個同學(xué)擔(dān)任兩角色,用樹狀圖或列表法求出被抽到的兩個學(xué)生性別相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=3+,B=45°,∠C=105°,點 D、EF分別在AC、BC、AB上,且四邊形ADEF為菱形,若點PAE上一個動點,則PF+PB的最小值為___________ 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)興趣小組活動中,李燕和劉凱兩位同學(xué)設(shè)計了如圖所示的兩個轉(zhuǎn)盤做游戲(每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時轉(zhuǎn)動甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).

(1)請用列表的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;

(2)分別求出李燕和劉凱獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,ABACBC交⊙OD,EAC的中點,EDAB的延長線相交于點F

1)求證:DE為⊙O的切線.

2)若BF2,tanBDF,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的弦,OPOAAB于點P,過點B的直線交OP的延長線于點C,且CPCB

1)求證:BC是⊙O的切線;

2)若OA5,OP3,求CB的長;

3)設(shè)AOP的面積是S1,BCP的面積是S2,且.若⊙O的半徑為4,BP,求tanCBP

查看答案和解析>>

同步練習(xí)冊答案