【題目】如圖,AB是⊙O的弦,OPOAAB于點(diǎn)P,過點(diǎn)B的直線交OP的延長(zhǎng)線于點(diǎn)C,且CPCB

1)求證:BC是⊙O的切線;

2)若OA5,OP3,求CB的長(zhǎng);

3)設(shè)AOP的面積是S1BCP的面積是S2,且.若⊙O的半徑為4,BP,求tanCBP

【答案】1)見解析;(22

【解析】

1)連接OB,由OPOA,得∠A+APO90°;由CPCB,得∠CBP=∠CPB;再由OAOB,得∠A=∠OBA,而∠CPB=∠APO,整理變形可得∠OBC90°,即BC是⊙O的切線;

2)設(shè)BCx,則PCx,在RtOBC中,由勾股定理可得關(guān)于x的方程

52+x2=(x+32,解方程即可求出CB的長(zhǎng);

3)作CDBPD,由PCPB,得PDBDPB,易證AOP∽△PCD,則由,可得,即,由此可求CD的長(zhǎng),再在RtBCD中,按照正切定義求出tanCBP即可.

1)證明:連接OB,如圖,

OPOA,

∴∠AOP90°,

∴∠A+APO90°,

CPCB

∴∠CBP=∠CPB,

而∠CPB=∠APO

∴∠APO=∠CBP,

OAOB,

∴∠A=∠OBA

∴∠OBC=∠CBP+OBA=∠APO+A90°,

OBBC

BC是⊙O的切線;

2)解:設(shè)BCx,則PCx,

RtOBC中,OBOA5,OCCP+OPx+3,

OB2+BC2OC2,

52+x2=(x+32

解得x,

BC的長(zhǎng)為;

3)解:如圖,作CDBPD,

PCPB

PDBDPB,

∵∠PDC=∠AOP90°,∠APO=∠CPD,

∴△AOP∽△PCD

,

,

,

OA4,

CD,

tanCBP2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明做用頻率估計(jì)概率的試驗(yàn)時(shí),根據(jù)統(tǒng)計(jì)結(jié)果,繪制了如圖所示的折線統(tǒng)計(jì)圖,則符合這一結(jié)果的試驗(yàn)最有可能的是(  )

A. 任意買一張電影票,座位號(hào)是2的倍數(shù)的概率

B. 一副去掉大小王的撲克牌,洗勻后,從中任抽一張牌的花色是紅桃

C. 拋一個(gè)質(zhì)地均勻的正方體骰子,落下后朝上的面點(diǎn)數(shù)是3

D. 一個(gè)不透明的袋子中有4個(gè)白球、1個(gè)黑球,它們除了顏色外都相同,從中抽到黑球

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了貫徹落實(shí)市委政府提出的精準(zhǔn)扶貧精神,某校特制定了一系列幫扶A、B兩貧困村的計(jì)劃,現(xiàn)決定從某地運(yùn)送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運(yùn)完這批魚苗,已知這兩種大小貨車的載貨能力分別為12/輛和8/輛,其運(yùn)往A、B兩村的運(yùn)費(fèi)如表:

車型

目的地

A村(元/輛)

B村(元/輛)

大貨車

800

900

小貨車

400

600

(1)求這15輛車中大小貨車各多少輛?

(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費(fèi)用為y元,試求出yx的函數(shù)解析式.

(3)在(2)的條件下,若運(yùn)往A村的魚苗不少于100箱,請(qǐng)你寫出使總費(fèi)用最少的貨車調(diào)配方案,并求出最少費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,在平面直角坐標(biāo)系中,已知拋物線 y=ax2+bx5 x 軸交于 A(﹣1,0),B5, 0)兩點(diǎn),與 y 軸交于點(diǎn) C

1)求拋物線的函數(shù)表達(dá)式;

2)若點(diǎn) D y 軸上的一點(diǎn),且以 BC,D 為頂點(diǎn)的三角形與ABC 相似,求點(diǎn) D 的坐標(biāo);

3)如圖 2,CEx 軸與拋物線相交于點(diǎn) E,點(diǎn) H 是直線 CE 下方拋物線上的動(dòng)點(diǎn),過點(diǎn) H且與 y 軸平行的直線與 BCCE 分別相交于點(diǎn) F,G,試探究當(dāng)點(diǎn) H 運(yùn)動(dòng)到何處時(shí),四邊形CHEF 的面積最大,求點(diǎn) H 的坐標(biāo)及最大面積;

4)若點(diǎn) K 為拋物線的頂點(diǎn),點(diǎn) M4m)是該拋物線上的一點(diǎn),在 x 軸,y 軸上分別找點(diǎn) P,Q,使四邊形 PQKM 的周長(zhǎng)最小,求出點(diǎn) PQ 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以半圓中的一條弦BC(非直徑)為對(duì)稱軸將弧BC折疊后與直徑AB交于點(diǎn)D,若,且AB10,則CB的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,2)請(qǐng)解答下列問題:

(1)畫出ABC關(guān)于y軸對(duì)稱的A1B1C1,并寫出A1的坐標(biāo).

(2)畫出ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后得到的A2B2C2,并寫出A2的坐標(biāo).

(3)畫出A2B2C2關(guān)于原點(diǎn)O成中心對(duì)稱的A3B3C3,并寫出A3的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《國(guó)家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》規(guī)定:體質(zhì)測(cè)試成績(jī)達(dá)到90.0分及以上的為優(yōu)秀;達(dá)到80.0分至89.9分的為良好;達(dá)到60.0分至79.9分的為及格;59.9分及以下為不及格,某校為了了解九年級(jí)學(xué)生體質(zhì)健康狀況,從該校九年級(jí)學(xué)生中隨機(jī)抽取了10%的學(xué)生進(jìn)行體質(zhì)測(cè)試,測(cè)試結(jié)果如下面的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖所示。

各等級(jí)學(xué)生平均分統(tǒng)計(jì)表

等級(jí)

優(yōu)秀

良好

及格

不及格

平均分

92.1

85.0

69.2

41.3

各等級(jí)學(xué)生人數(shù)分布扇形統(tǒng)計(jì)圖

1)扇形統(tǒng)計(jì)圖中不及格所占的百分比是  ;

2)計(jì)算所抽取的學(xué)生的測(cè)試成績(jī)的平均分;

3)若所抽取的學(xué)生中所有不及格等級(jí)學(xué)生的總分恰好等于某一個(gè)良好等級(jí)學(xué)生的分?jǐn)?shù),請(qǐng)估計(jì)該九年級(jí)學(xué)生中約有多少人達(dá)到優(yōu)秀等級(jí)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖1△ABC中,BA=BC,D是平面內(nèi)不與AB、C重合的任意一點(diǎn),∠ABC=∠DBE,BD=BE

1)求證:△ABD≌△CBE;

2)如圖2,當(dāng)點(diǎn)D△ABC的外接圓圓心時(shí),請(qǐng)判斷四邊形BDCE的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,A,B兩個(gè)頂點(diǎn)在x軸的上方,點(diǎn)C的坐標(biāo)是(-1,0).以點(diǎn)C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長(zhǎng)放大到原來的2倍,記所得的像是△A′B′C.設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的橫坐標(biāo)是a,則點(diǎn)B的橫坐標(biāo)是( )

A. - B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案