【題目】如圖1,在平面直角坐標系中,拋物線經(jīng)過點和點.
(1)求拋物線的解析式及頂點的坐標;
(2)點是拋物線上、之間的一點,過點作軸于點,軸,交拋物線于點,過點作軸于點,當矩形的周長最大時,求點的橫坐標;
(3)如圖2,連接、,點在線段上(不與、重合),作,交線段于點,是否存在這樣點,使得為等腰三角形?若存在,求出的長;若不存在,請說明理由.
【答案】(1);;(2)點的橫坐標為;(3)AN=1或.
【解析】
(1)根據(jù)和點可得拋物線的表達式為,可知對稱軸為x=-2,代入解析式即可得出頂點坐標;(2)設(shè)點,則,,可得矩形的周長,即可求解;(3)由D為頂點,A、B為拋物線與x軸的交點可得AD=BD,即可證明∠DAB=∠DBA,根據(jù),利用角的和差關(guān)系可得,即可證明,可得;分、、,三種情況分別求解即可.
(1)∵拋物線經(jīng)過點和點.
∴拋物線的表達式為:,
∴對稱軸為:x==-2,
把x=-2代入得:y=4,
∴頂點.
(2)設(shè)點,
則,,
矩形的周長,
∵,
∴當時,矩形周長最大,此時,點的橫坐標為.
(3)∵點D為拋物線頂點,A、B為拋物線與x軸的交點,
∴AD=BD,
∴∠DAB=∠DBA,
∵,,,
∴,
∴,
∴,
∵D(-2,4),A(-5,0),B(1,0)
∴,,
①當時,
∵∠NAM=∠MBD,∠NMA=∠MBD,
∴,
∴,
∴=AB-AM=1;
②當時,則,
∵∠DMN=∠DBA,
∴∠NDM=∠DBA,
∵∠DAB是公共角,
∴,
∴,
∴,即:,
∴,
∵,即,
∴;
③當時,
∵,而,
∴,
∴;
綜上所述:或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(探究)(1)如圖①,點E、F、G、H分別在平行四邊形ABCD的邊AB、BC、CD、DA上,連結(jié)EF、FG、GH、HE,將△AEH、△BFE、△CGF、△DHG分別沿EF、FG、GH、HE折疊,折疊后的圖形恰好能拼成一個無重疊、無縫隙的矩形.若,,求的長.
(拓展)(2)參考圖②,四邊形ABCD是平行四邊形,,當按圖①的方式折疊后的圖形能拼成一個無重疊、無縫隙的正方形時,則___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y=-x2+2x+3的圖象與x軸交于點A、B,與y軸交于點C,頂點為D.
(1)寫出A、B、D三點的坐標;
(2)若P(0,t)(t<-1)是y軸上一點,Q(-5,0),將點Q繞著點P順時針方向旋轉(zhuǎn)90°得到點E.當點E恰好在該二次函數(shù)的圖象上時,求t的值;
(3)在(2)的條件下,連接AD、AE.若M是該二次函數(shù)圖象上一點,且∠DAE=∠MCB,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料,完成(1)﹣(3)題
數(shù)學(xué)課上,老師出示了這樣一道題:如圖,四邊形ABCD,AD∥BC,AB=AD,E為對角線AC上一點,∠BEC=∠BAD=2∠DEC,探究AB與BC的數(shù)量關(guān)系.
某學(xué)習(xí)小組的同學(xué)經(jīng)過思考,交流了自己的想法:
小柏:“通過觀察和度量,發(fā)現(xiàn)∠ACB=∠ABE”;
小源:“通過觀察和度量,AE和BE存在一定的數(shù)量關(guān)系”;
小亮:“通過構(gòu)造三角形全等,再經(jīng)過進一步推理,就可以得到線段AB與BC的數(shù)量關(guān)系”.
……
老師:“保留原題條件,如圖2, AC上存在點F,使DF=CF=AE,連接DF并延長交BC于點G,求的值”.
(1)求證:∠ACB=∠ABE;
(2)探究線段AB與BC的數(shù)量關(guān)系,并證明;
(3)若DF=CF=AE,求的值(用含k的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鄭州市采暖季出現(xiàn) PM2.5 污染,小明媽媽收集了一個月(30 天)的 PM2.5 污染指數(shù),記錄如下:(單位:μg/m3)說明:0-50 優(yōu),51-100 良,101-150 輕度污染,151-200 中度污染,201-250 重度污染,251 以上嚴重污染.117,171,170, 208,192,120,243,256,56,115,166,155,156,187,114,49,55, 95,148,160,15,31,62,174,183,162,131,112,96,71對這 30 個數(shù)據(jù)按組距 50 進行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:
(1)填空:a= ,b= ;
(2)補全頻數(shù)分布直方圖;
(3)這 30 天 PM2.5 污染指數(shù)的中位數(shù)落在 組;
(4)若一個采暖季為 120 天,請估計空氣污染指數(shù)不低于 100 的天數(shù)(結(jié)果取整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠B=90°,AB=12,BC=16,點P從點A開始沿邊AB向點B以1cm/s的速度移動,與此同時,點Q從點B開始沿邊BC向點C以2cm/s的速度移動.如果P、Q分別從A、B同時出發(fā),當點Q運動到點C時,兩點停止運動,問:
(1)經(jīng)過幾秒后,△PBQ的面積等于20cm2?
(2)△PBQ的面積會等于△ABC的面積的一半嗎?若會,請求出此時的運動時間;若不會,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,函數(shù)y=x和y=﹣x的圖象分別為直線l1,l2,過l1上的點A1(1,)作x軸的垂線交l2于點A2,過點A2作y軸的垂線交l1于點A3,過點A3作x軸的垂線交l2于點A4,…依次進行下去,則點A2019的橫坐標為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】第二十四屆冬季奧林匹克運動會將與2022年2月20日在北京舉行,北京將成為歷史上第一座舉辦過夏奧會又舉辦過冬奧會的城市,東寶區(qū)舉辦了一次冬奧會知識網(wǎng)上答題競賽,甲、乙兩校各有400名學(xué)生參加活動,為了解這兩所學(xué)校的成績情況,進行了抽樣調(diào)查,過程如下,請補充完整.
(收集數(shù)據(jù))
從甲、乙兩校各隨機抽取20名學(xué)生,在這次競賽中它們的成績?nèi)缦拢?/span>
甲 | 30 | 60 | 60 | 70 | 60 | 80 | 30 | 90 | 100 | 60 |
60 | 100 | 80 | 60 | 70 | 60 | 60 | 90 | 60 | 60 | |
乙 | 80 | 90 | 40 | 60 | 80 | 80 | 90 | 40 | 80 | 50 |
80 | 70 | 70 | 70 | 70 | 60 | 80 | 50 | 80 | 80 |
(整理、描述數(shù)據(jù))按如下分數(shù)段整理、描述這兩組樣本數(shù)據(jù):
(說明:優(yōu)秀成績?yōu)?/span>80<x≤100,良好成績?yōu)?/span>50<x≤80,合格成績?yōu)?/span>30≤x≤50.)
學(xué)校 | 平均分 | 中位數(shù) | 眾數(shù) |
甲 | 67 | 60 | 60 |
乙 | 70 | 75 | a |
30≤x≤50 | 50<x≤80 | 80<x≤100 | |
甲 | 2 | 14 | 4 |
乙 | 4 | 14 | 2 |
(分析數(shù)據(jù))兩組樣本數(shù)據(jù)的平均分、中位數(shù)、眾數(shù)如右表所示:其中a= .
(得出結(jié)論)
(1)小偉同學(xué)說:“這次競賽我得了70分,在我們學(xué)校排名屬中游略偏上!”由表中數(shù)據(jù)可知小明是 校的學(xué)生;(填“甲”或“乙”)
(2)老師從乙校隨機抽取一名學(xué)生的競賽成績,試估計這名學(xué)生的競賽成績?yōu)閮?yōu)秀的概率為 ;
(3)根據(jù)以上數(shù)據(jù)推斷一所你認為競賽成績較好的學(xué)校,并說明理由.(至少從兩個不同的角度說明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,直線經(jīng)過點,與y軸交于點B,與拋物線的對稱軸交于點.
(1)求m的值;
(2)求拋物線的頂點坐標;
(3)是線段AB上一動點,過點N作垂直于y軸的直線與拋物線交于點,(點P在點Q的左側(cè)).若恒成立,結(jié)合函數(shù)的圖象,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com