【題目】如圖,A、BC三點均在二次函數(shù)yx2的圖象上,M為線段AC的中點,BMy軸,且MB2.設(shè)A、C兩點的橫坐標分別為t1t2t2t1),則t2t1的值為(  )

A.3B.2C.2D.2

【答案】B

【解析】

設(shè)B點坐標為Bx,x2),則Mx,x2+2),由M為線段AC的中點,得到t1+t22x+x2+2,從而求出t2t12

解:設(shè)B點坐標為Bx,x2),

BMy軸,MB2,

Mx,x2+2),

A、B、C三點均在二次函數(shù)yx2的圖象上,

At1,),Ct2,),

M為線段AC的中點,

t1+t22x,x2+2,

∴(t2t128

t2t1,

t2t12,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,y軸上一點A0,2),在x軸上有一動點B,連結(jié)AB,過B點作直線lx軸,交AB的垂直平分線于點P(x,y),在B點運動過程中,P點的運動軌跡是________,y關(guān)于x的函數(shù)解析式是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系 xOy 中,拋物線 y=ax2﹣4ax+3a﹣2(a≠0)與 x軸交于 A,B 兩(點 A 在點 B 左側(cè)).

(1)當拋物線過原點時,求實數(shù) a 的值;

(2)①求拋物線的對稱軸;

②求拋物線的頂點的縱坐標(用含 a 的代數(shù)式表示);

(3)當 AB≤4 時,求實數(shù) a 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于的分式方程有負分數(shù)解,且關(guān)于的不等式組的解集為,那么符合條件的所有整數(shù)的積是( )

A. B. 0 C. 3 D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)y的圖象與性質(zhì).小彤根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y的圖象與性質(zhì)進行了探究.

下面是小彤探究的過程,請補充完整:

(1)函數(shù)y的自變量x的取值范圍是   ;

(2)下表是yx的幾組對應(yīng)值:

x

2

1

0

1

2

4

5

6

7

8

y

m

0

1

3

2

m的值為   

(3)如圖所示,在平面直角坐標系xOy中,描出了以上表中各對對應(yīng)值為坐標的點,根據(jù)描出的點,畫出了圖象的一部分,請根據(jù)剩余的點補全此函數(shù)的圖象;

(4)觀察圖象,寫出該函數(shù)的一條性質(zhì)   ;

(5)若函數(shù)y的圖象上有三個點A(x1y1)、B(x2y2)、C(x3,y3),且x13x2x3,則y1、y2、y3之間的大小關(guān)系為   ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD中,AB2,BCm,點E是邊BC上一點,BE1,連接AE,沿AE翻折△ABE使點B落在點F處.

1)連接CF,若CFAE,求m的值;

2)連接DF,若DF,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,正方形ABCD的位置如圖所示,點的坐標為,點的坐標為,延長軸于點,作正方形,延長軸于點,作正方形,…按這樣的規(guī)律進行下去,第個正方形的面積為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AB=AC,∠BAC=36°,過點A作ADBC,與ABC的平分線交于點D,BD與AC交于點E,與O交于點F.

(1)求DAF的度數(shù);

(2)求證:AE2=EFED;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(﹣14),B(﹣4,0),C(﹣1,0).

1A1B1C1ABC關(guān)于原點O對稱,畫出A1B1C1并寫出點A1的坐標;

2A2B2C2ABC繞原點O順時針旋轉(zhuǎn)90°得到的,畫出A2B2C2并寫出點A2的坐標;

3)連接OA、OA2,在ABC繞原點O順時針旋轉(zhuǎn)90°得到的A2B2C2的過程中,計算線段OA變換到OA2過程中掃過區(qū)域的面積是多少?(直接寫出答案)

查看答案和解析>>

同步練習(xí)冊答案