【題目】如圖,在平面直角坐標(biāo)系中,y軸上一點(diǎn)A(0,2),在x軸上有一動點(diǎn)B,連結(jié)AB,過B點(diǎn)作直線l⊥x軸,交AB的垂直平分線于點(diǎn)P(x,y),在B點(diǎn)運(yùn)動過程中,P點(diǎn)的運(yùn)動軌跡是________,y關(guān)于x的函數(shù)解析式是________.
【答案】拋物線 y=x2+1
【解析】
當(dāng)點(diǎn)B在x軸的正半軸上時,如圖1,連接PA,作AC⊥PB于點(diǎn)C,則四邊形AOBC是矩形,由P在AB的垂直平分線上可得PA=PB,進(jìn)而可用y的代數(shù)式表示出PC、AP,在Rt△APC中根據(jù)勾股定理即可得出y與x的關(guān)系式;當(dāng)點(diǎn)B在x軸的負(fù)半軸上時,用同樣的方法求解即可.
解:當(dāng)點(diǎn)B在x軸的正半軸上時,如圖1,連接PA,作AC⊥PB于點(diǎn)C,則四邊形AOBC是矩形,
∴AC=OB=x,BC=OA=2,
∵P在AB的垂直平分線上,∴PA=PB=y,
在Rt△APC中,AC2+PC2=AP2,∴x2+(y2)2=y2,整理得y=x2+1;
當(dāng)點(diǎn)B在x軸的負(fù)半軸上時,如圖2,同理可得y ,x滿足的關(guān)系式是:y=x2+1,
∴y ,x滿足的關(guān)系式是:y=x2+1.
故答案為:拋物線、y=x2+1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,∠B的角平分線BE與AD交于點(diǎn)E,∠BED的角平分線EF與DC交于點(diǎn)F,若AB=9,DF=2FC,則BC=____.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形EFGH的四個頂點(diǎn)分別在正方形ABCD的四條邊上,若正方形EFGH與正方形ABCD的相似比為,則()的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在,,,,這組數(shù)據(jù)中,去掉一個數(shù)后,余下的數(shù)據(jù)的中位數(shù)不變,且方差減小,則去掉的數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△AOB的位置如圖所示,∠AOB=90°,AO=BO,點(diǎn)A的坐標(biāo)為(-1, 2) .拋物線y = ax2 + bx (a≠0)恰好經(jīng)過A, B兩點(diǎn).
(1)直接寫出點(diǎn)B坐標(biāo) .
(2)求該拋物線的函數(shù)表達(dá)式.
(3)設(shè)A關(guān)于拋物線的對稱軸l的對稱點(diǎn)為A',求△AA' B的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線y=x2﹣2x+m與y軸交于點(diǎn)C(0,﹣2),點(diǎn)D和點(diǎn)C關(guān)于拋物線對稱軸對稱.
(1)求此拋物線的解析式和點(diǎn)D的坐標(biāo);
(2)如果點(diǎn)M是拋物線的對稱軸與x軸的交點(diǎn),求MCD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將繞頂點(diǎn)A順時針旋轉(zhuǎn)后得到,且為的中點(diǎn),與相交于,若,則線段的長度為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)A是x軸正半軸上的動點(diǎn),點(diǎn)B的坐標(biāo)為(0,4),M是線段AB的中點(diǎn).將點(diǎn)M繞點(diǎn)A順時針方向旋轉(zhuǎn)900得到點(diǎn)C,過點(diǎn)C作x軸的垂線,垂足為F,過點(diǎn)B作y軸的垂線與直線CF相交于點(diǎn)E,點(diǎn)D是點(diǎn)A關(guān)于直線CF的對稱點(diǎn).連結(jié)AC,BC,CD,設(shè)點(diǎn)A的橫坐標(biāo)為t,
(1)當(dāng)t=2時,求CF的長;
(2)①當(dāng)t為何值時,點(diǎn)C落在線段CD上;
②設(shè)△BCE的面積為S,求S與t之間的函數(shù)關(guān)系式;
(3)如圖2,當(dāng)點(diǎn)C與點(diǎn)E重合時,將△CDF沿x軸左右平移得到,再將A,B,為頂點(diǎn)的四邊形沿剪開,得到兩個圖形,用這兩個圖形拼成不重疊且無縫隙的圖形恰好是三角形.請直接寫出符合上述條件的點(diǎn)坐標(biāo),
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B、C三點(diǎn)均在二次函數(shù)y=x2的圖象上,M為線段AC的中點(diǎn),BM∥y軸,且MB=2.設(shè)A、C兩點(diǎn)的橫坐標(biāo)分別為t1、t2(t2>t1),則t2﹣t1的值為( 。
A.3B.2C.2D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com