【題目】如圖1,已知拋物線C1x軸的正半軸交于點A,點B為拋物線的頂點,直線l是一條動直線.

(1)求點A、點B的坐標(biāo);

(2)當(dāng)直線l經(jīng)過點A時,求出直線l的解析式,并直接寫出此時當(dāng)時,自變量x的取值范圍;

(3)如圖2,將拋物線C1x軸上方的部分沿x軸翻折,與C1x軸下方的圖形組合成一個新的圖形C2,當(dāng)直線l與組合圖形C2有且只有兩個交點時,直接寫出k的取值范圍.

【答案】(1)A(2, 0),B(1,3);(2)x>2x<(3)k<0

【解析】

1)公式法可求得AB點坐標(biāo);

2A點代入直線,可求得其解析式,聯(lián)立y1,y2,可求得直線解析式,結(jié)合圖象,可求得符合要求的x的取值范圍;

3)結(jié)合圖象觀察,k<0時,只有兩個交點.

(1)y=0,

解得:

A(2, 0),

,

當(dāng)x=1時,y=3,

B(1,3)

(2)A(2,0)代入中,

∴直線解析式為:,

聯(lián)立兩函數(shù),則兩圖像另一交點為(-,-),

結(jié)合圖象,當(dāng)時,

x>2x<;

(3)由圖象可知,當(dāng)直線經(jīng)過A點時,恰有三個交點,

當(dāng)直線向上運動時,只有兩個交點,

時,恰有兩個交點;

當(dāng)k<0時,正好有兩個交點,滿足條件,

k<0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,與y軸交于點C對稱軸為直線x=1.直線y=﹣x+c與拋物線y=ax2+bx+c交于C、D兩點,D點在x軸下方且橫坐標(biāo)小于3,則下列結(jié)論:

①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.

其中正確的有( 。

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了運送防疫物資,甲、乙兩貨運公司各派出一輛卡車,分別從距目的地240千米和270千米的兩地同時出發(fā),馳援疫區(qū).已知乙公司卡車的平均速度是甲公司卡車的平均速度的1.5倍,甲公司的卡車比乙公司的卡車晚1小時到達(dá)目的地,分別求甲、乙兩貨運公司卡車的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提升學(xué)生的藝術(shù)素養(yǎng),學(xué)校計劃開設(shè)四門藝術(shù)選修課:A.書法;B.繪畫;C.樂器;D.舞蹈.為了解學(xué)生對四門功課的喜歡情況,在全校范圍內(nèi)隨機(jī)抽取若干名學(xué)生進(jìn)行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).將數(shù)據(jù)進(jìn)行整理,并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:

(1)本次調(diào)查的學(xué)生共有多少人?扇形統(tǒng)計圖中∠α的度數(shù)是多少?

(2)請把條形統(tǒng)計圖補(bǔ)充完整;

(3)學(xué)校為舉辦2018年度校園文化藝術(shù)節(jié),決定從A.書法;B.繪畫;C.樂器;D.舞蹈四項藝術(shù)形式中選擇其中兩項組成一個新的節(jié)目形式,請用列表法或樹狀圖求出選中書法與樂器組合在一起的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“世界讀書日”前夕,某校開展了“讀書助我成長”的閱讀活動.為了了解該校學(xué)生在此次活動中課外閱讀書籍的數(shù)量情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,將收集到的數(shù)據(jù)進(jìn)行整理,繪制出兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖信息解決下列問題:

1)求本次調(diào)查中共抽取的學(xué)生人數(shù);

2)補(bǔ)全條形統(tǒng)計圖;

3)在扇形統(tǒng)計圖中,閱讀本書籍的人數(shù)所在扇形的圓心角度數(shù)是   ;

4)若該校有名學(xué)生,估計該校在這次活動中閱讀書籍的數(shù)量不低于本的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠BAC=60°,AD平分∠BAC交邊BC于點D,分別過DDEAC交邊AB于點EDFAB交邊AC于點F

(1)如圖1,試判斷四邊形AEDF的形狀,并說明理由;

(2)如圖2,若AD=4,點H,G分別在線段AE,AF上,且EH=AG=3,連接EGAD于點M,連接FHEG于點N

(i)ENEG的值;

(ii)將線段DM繞點D順時針旋轉(zhuǎn)60°得到線段DM,求證:H,F,M三點在同一條直線上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解密數(shù)學(xué)魔術(shù):魔術(shù)師請觀眾心想一個數(shù),然后將這個數(shù)按以下步驟操作:

魔術(shù)師能立刻說出觀眾想的那個數(shù).

1)如果小玲想的數(shù)是,請你通過計算幫助她告訴魔術(shù)師的結(jié)果;

2)如果小明想了一個數(shù)計算后,告訴魔術(shù)師結(jié)果為85,那么魔術(shù)師立刻說出小明想的那個數(shù)是:__________

3)觀眾又進(jìn)行了幾次嘗試,魔術(shù)師都能立刻說出他們想的那個數(shù).若設(shè)觀眾心想的數(shù)為,請你按照魔術(shù)師要求的運算過程列代數(shù)式并化簡,再用一句話說出這個魔術(shù)的奧妙.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點是邊長為的正方形的對角線上的動點,過點分別作于點于點,連接并延長,交射線于點交射線于點,連接于點當(dāng)點在上運動時(不包括兩點),以下結(jié)論:①;②;③;④的最小值是.其中正確的是_______.(把你認(rèn)為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BM切⊙O于點B,點P是⊙O上的一個動點(點P不與A,B兩點重合),連接AP,過點OOQAPBM于點Q,過點PPEAB于點C,交QO的延長線于點E,連接PQ,OP,AE

1)求證:直線PQ為⊙O的切線;

2)若直徑AB的長為4

①當(dāng)PE   時,四邊形BOPQ為正方形;

②當(dāng)PE   時,四邊形AEOP為菱形.

查看答案和解析>>

同步練習(xí)冊答案