【題目】拋物線經(jīng)過、兩點,若關(guān)于的一元二次方程的一個解為,則__________.
【答案】1或
【解析】
根據(jù)拋物線與x軸的交點問題得到關(guān)于x的一元二次方程a(x-h)2+k=0的解為x1=-1,x2=5,再把方程a(x-h+m)2+k=0可看作關(guān)于x+m的一元二次方程,則x+m=-1或x+m=5,然后把x=4代入可計算出m的值.
解:∵拋物線y=a(x-h)2+k經(jīng)過(-1,0)、(5,0)兩點,
∴關(guān)于x的一元二次方程a(x-h)2+k=0的解為x1=-1,x2=5,
∵關(guān)于x的一元二次方程a(x-h+m)2+k=0可看作關(guān)于x+m的一元二次方程,
∴x+m=-1或x+m=5,
而關(guān)于x的一元二次方程a(x-h+m)2+k=0的一個解為x=4,
∴4+m=-1或4+m=5,
∴m=-5或1.
故答案為-5或1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為cm,在AC,BC邊上各取一點E,F,使得AE=CF,連接AF,BE相交于點P.(1)則∠APB=______度;(2)當點E從點A運動到點C時,則動點P經(jīng)過的路徑長為________cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,其對稱軸為直線x=﹣1,與x軸的交點為(x1,0)、(x2,0),其中0<x1<1,有下列結(jié)論:①c>0;②﹣3<x2<﹣2;③a+b+c<0;④b2﹣4ac>0;⑤已知圖象上點A(4,y1),B(1,y2),則y1>y2.其中,正確結(jié)論的個數(shù)有( 。
A.5B.4C.3D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,D是BC邊的中點,以D為頂點作一個120°的角,角的兩邊分別交直線AB,AC于M,N兩點,以點D為中心旋轉(zhuǎn)∠MDN(∠MDN的度數(shù)不變),若DM與AB垂直時(如圖①所示),易證BM +CN =BD.
(1)如圖②,若DM與AB不垂直時,點M在邊AB上,點N在邊AC上,上述結(jié)論是否成立?若成立,請給予證明;若不成立,請說明理由;
(2)如圖③,若DM與AB不垂直時,點M在邊AB.上,點N在邊AC的延長線上,上述結(jié)論是否成立?若不成立,請寫出BM,CN,BD之間的數(shù)量關(guān)系,不用證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九一班計劃購買A、B兩種相冊共42冊作為畢業(yè)禮品,這兩種相冊的單價分別是50元和40元,由于學生對兩類相冊喜好不同,經(jīng)調(diào)查得知:購買的A種相冊的數(shù)量要少于B種相冊數(shù)量的,但又不少于B種相冊數(shù)量的,如果設(shè)買A種相冊x冊,買這兩種相冊共花費y元.
(1)求計劃購買這兩種相冊所需的費用y(元)關(guān)于x(冊)的函數(shù)關(guān)系式.
(2)班委會多少種不同的購買方案?
(3)商店為了促銷,決定對A種相冊每冊讓利a元銷售(12≤a≤18),B種相冊每冊讓利b元銷售,最后班委會同學在付款時發(fā)現(xiàn):購買所需的總費用與購買的方案無關(guān),當總費用最少時,求此時a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從⊙O外一點A引⊙O的切線AB,切點為B,連接AO并延長交⊙O于點C,點D.連接BC.
(1)如圖1,若∠A=26°,求∠C的度數(shù);
(2)如圖2,若AE平分∠BAC,交BC于點E.求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展學生對食堂評價調(diào)查,每名學生只能從“優(yōu)”、“良”、“差”三種選擇其中一個進行評價,假設(shè)這三種評價是等可能的且所有學生都參與了評價.學校對學生的評價信息進行了統(tǒng)計,并繪制了兩幅不完整的統(tǒng)計圖,利用圖中所提供的信息解決下面問題:
(1)學校共有多少學生參與評價?
(2)圖2中“良”所占扇形圓心角的度數(shù)是________;
(3)請將圖1補充完整;
(4)若甲、乙兩名學生參與了對食堂的評價,請你用列表格或畫樹狀圖的方法求兩人中至少有一個給“差”評價的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1、圖2分別是的網(wǎng)格,網(wǎng)格中每個小正方形的邊長均為1,A、B兩點在小正方形的頂點上,請在圖1、圖2中各取兩點C、D(點C、D必須在小正方形的頂點上).使以A、B、C、D為頂點的四邊形分別滿足以下要求:
(1)在圖1中畫一個菱形ABCD,連接AC,且使;
(2)在圖2中畫一個以AB為對角線的四邊形AEBF,且此四邊形為軸對稱圖形,,并直接寫出所畫四邊形的面積;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com