【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,其對(duì)稱(chēng)軸為直線x=﹣1,與x軸的交點(diǎn)為(x1,0)、(x2,0),其中0<x1<1,有下列結(jié)論:①c>0;②﹣3<x2<﹣2;③a+b+c<0;④b2﹣4ac>0;⑤已知圖象上點(diǎn)A(4,y1),B(1,y2),則y1>y2.其中,正確結(jié)論的個(gè)數(shù)有( 。
A.5B.4C.3D.2
【答案】C
【解析】
由圖象可知當(dāng)x=0時(shí),y<0,所以c<0;函數(shù)與x軸有兩個(gè)交點(diǎn),所以△>0,即b2﹣4ac>0;當(dāng)x=1時(shí),y>0,所以a+b+c>0;由函數(shù)的對(duì)稱(chēng)性可知,對(duì)稱(chēng)軸為x=﹣1,0<x1<1,則另一個(gè)交點(diǎn)為﹣3<x2<﹣2;由函數(shù)在對(duì)稱(chēng)軸的右側(cè)y隨x值的增大而增大,可求y1>y2.
解:由圖象可知,當(dāng)x=0時(shí),y<0,
∴c<0,
∴①不正確;
∵對(duì)稱(chēng)軸為x=﹣1,0<x1<1,
∴﹣3<x2<﹣2,
∴②正確;
當(dāng)x=1時(shí),y>0,
∴a+b+c>0,
∴③不正確;
∵函數(shù)與x軸有兩個(gè)交點(diǎn),
∴△>0,即b2﹣4ac>0,
∴④正確;
由點(diǎn)A(4,y1),B(1,y2)可知,點(diǎn)A、B在對(duì)稱(chēng)軸的右側(cè),
∴y隨x值的增大而增大,
∴y1>y2,
故⑤正確;
正確的有3個(gè),
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)商店銷(xiāo)售一種紀(jì)念品,每件的進(jìn)貨價(jià)為40元.經(jīng)市場(chǎng)調(diào)研,當(dāng)該紀(jì)念品每件的銷(xiāo)售價(jià)為50元時(shí),每天可銷(xiāo)售200件;當(dāng)每件的銷(xiāo)售價(jià)每增加1元,每天的銷(xiāo)售數(shù)量將減少10件.
(1)當(dāng)銷(xiāo)售該紀(jì)念品每天能獲得利潤(rùn)2160元時(shí),每件的銷(xiāo)售價(jià)應(yīng)為多少?
(2)當(dāng)每件的銷(xiāo)售價(jià)為多少時(shí),銷(xiāo)售該紀(jì)念品每天獲得的利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)A在第一象限,點(diǎn)C在第四象限,點(diǎn)B在x軸的正半軸上.∠OAB=90°且OA=AB,OB,OC的長(zhǎng)分別是二元一次方程組的解(OB>OC).
(1)求點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)點(diǎn)P是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)O,B重合),過(guò)點(diǎn)P的直線l與y軸平行,直線l交邊OA或邊AB于點(diǎn)Q,交邊OC或邊BC于點(diǎn)R.設(shè)點(diǎn)P的橫坐標(biāo)為t,線段QR的長(zhǎng)度為m.已知t=4時(shí),直線l恰好過(guò)點(diǎn)C.
①當(dāng)0<t<3時(shí),求m關(guān)于t的函數(shù)關(guān)系式;
②當(dāng)m=時(shí),求點(diǎn)P的橫坐標(biāo)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖2.
①在旋轉(zhuǎn)過(guò)程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);
②若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過(guò)程中,求AF′長(zhǎng)的最大值和此時(shí)α的度數(shù),直接寫(xiě)出結(jié)果不必說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點(diǎn)為A,BC交⊙O于點(diǎn)D,點(diǎn)E是AC的中點(diǎn).
(1)試判斷直線DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若⊙O的半徑為2,∠B=50°,AC=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點(diǎn)為A,BC交⊙O于點(diǎn)D,點(diǎn)E是AC的中點(diǎn).
(1)試判斷直線DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若⊙O的半徑為2,∠B=50°,AC=6,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線經(jīng)過(guò)、兩點(diǎn),若關(guān)于的一元二次方程的一個(gè)解為,則__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E、F分別在邊AB和CD上,下列條件不能判定四邊形DEBF一定是平行四邊形的是( )
A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,半徑為1的與軸正半軸和軸正半軸分別交于兩點(diǎn),直線:與軸和軸分別交于兩點(diǎn).
(l)當(dāng)直線與相切時(shí),求出點(diǎn)的坐標(biāo)和點(diǎn)的坐標(biāo);
(2)如圖2,當(dāng)點(diǎn)在線段上時(shí),直線與交于兩點(diǎn)(點(diǎn)在點(diǎn)的上方),過(guò)點(diǎn)作軸,與交于另一點(diǎn),連結(jié)交軸于點(diǎn).
①如圖3,若點(diǎn)與點(diǎn)重合時(shí),求的長(zhǎng)并寫(xiě)出解答過(guò)程;
②如圖2,若點(diǎn)與點(diǎn)不重合時(shí),的長(zhǎng)是否發(fā)生變化,若不發(fā)生變化,請(qǐng)求出的長(zhǎng)并寫(xiě)出解答過(guò)程;若發(fā)生變化,請(qǐng)說(shuō)明理由.
(3)如圖4,在(2)的基礎(chǔ)上,連結(jié),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)到,若點(diǎn)在的延長(zhǎng)線時(shí),請(qǐng)用等式直接表示線段,之間的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com