【題目】設(shè)棱錐的頂點(diǎn)數(shù)為V,面數(shù)為F,棱數(shù)為E.

(1)觀察與發(fā)現(xiàn):三棱錐中,V3=   ,F(xiàn)3=   ,E3=   ;

五棱錐中,V5=   ,F(xiàn)5=   ,E5=   ;

(2)猜想:十棱錐中,V10=   ,F(xiàn)10=   ,E10=   ;

n棱錐中,Vn=   ,F(xiàn)n=   ,En=   ;(用含有n的式子表示)

(3)探究:棱錐的頂點(diǎn)數(shù)(V)與面數(shù)(F)之間的等量關(guān)系:   

棱錐的頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間的等量關(guān)系:E=   

(4)拓展:棱柱的頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間是否也存在某種等量關(guān)系?若存在,試寫出相應(yīng)的等式;若不存在,請(qǐng)說明理由.

【答案】(1)4,4,6;6,610;(21111,20;n+1,n+12n;(3V=F,V+F2.(4)V+F﹣E=2.

【解析】

(1)觀察與發(fā)現(xiàn):根據(jù)三棱錐、五棱錐的特征填寫即可;
(2)猜想:根據(jù)十棱錐的特征填寫即可;
②根據(jù)n棱錐的特征的特征填寫即可;
(3)探究:通過列舉得到棱錐的頂點(diǎn)數(shù)(V)與面數(shù)(F)之間的等量關(guān)系;
通過列舉得到棱錐的頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間的等量關(guān)系;
(4)拓展:根據(jù)棱柱的特征得到棱柱的頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間的等量關(guān)系.

解:(1)觀察與發(fā)現(xiàn):三棱錐中,V3=4,F(xiàn)3=4,E3=6;

五棱錐中,V5=6,F(xiàn)5=6,E5=10;

2)猜想:①十棱錐中,V10=11,F(xiàn)10=11,E10=20;

②n棱錐中,Vn=n+1,Fn=n+1En=2n;(用含有n的式子表示)

3)探究:①棱錐的頂點(diǎn)數(shù)(V)與面數(shù)(F)之間的等量關(guān)系:V=F;

②棱錐的頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間的等量關(guān)系:E=V+F﹣2;

4)拓展:棱柱的頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間也存在某種等量關(guān)系,相應(yīng)的等式是:V+F﹣E=2.

故答案為:4,4,6;6,6,10;11,11,20;n+1,n+1,2n;V=F,V+F﹣2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市水果批發(fā)部門欲將A市的一批水果運(yùn)往本市銷售,有火車和汽車兩種運(yùn)輸方式,運(yùn)輸過程中的損耗均為200元/時(shí)。其它主要參考數(shù)據(jù)如下:

運(yùn)輸工具

途中平均速度(千米/時(shí))

運(yùn)費(fèi)(元/千米)

裝卸費(fèi)用(元)

火車

100

15

2000

汽車

80

20

900

(1)如果汽車的總支出費(fèi)用比火車費(fèi)用多1100元,你知道本市與A市之間的路程是多少千米嗎?請(qǐng)你列方程解答

(2)如果A市與某市之間的距離為S千米,且知道火車與汽車在路上耽誤的時(shí)間分別為2小時(shí)和3.1小時(shí),你若是某市水果批發(fā)部門的經(jīng)理,要將這種水果從A市運(yùn)往本市銷售。你將選擇哪種運(yùn)輸方式比較合算呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)E、F分別在直線AB,CD上,點(diǎn)P在AB、CD之間,連結(jié)EP、FP,如圖1,過FP上的點(diǎn)G作GH∥EP,交CD于點(diǎn)H,且∠1=∠2.

(1)求證:AB∥CD;

(2)如圖2,將射線FC沿FP折疊,交PE于點(diǎn)J,若JK平分∠EJF,且JK∥AB,則∠BEP與∠EPF之間有何數(shù)量關(guān)系,并證明你的結(jié)論;

(3)如圖3,將射線FC沿FP折疊,將射線EA沿EP折疊,折疊后的兩射線交于點(diǎn)M,當(dāng)EM⊥FM時(shí),求∠EPF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠DBC=90°,AB=9,AD=12,BC=8,DC=17,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10cm,BD⊥AC于點(diǎn)D,BD=8cm.點(diǎn)M從點(diǎn)A出發(fā),沿AC的方向勻速運(yùn)動(dòng),同時(shí)直線PQ由點(diǎn)B出發(fā),沿BA的方向勻速運(yùn)動(dòng),運(yùn)動(dòng)過程中始終保持PQ∥AC,直線PQ交AB于點(diǎn)P、交BC于點(diǎn)Q、交BD于點(diǎn)F.連接PM,設(shè)運(yùn)動(dòng)時(shí)間為t秒(0<t≤5).線段CM的長(zhǎng)度記作y , 線段BP的長(zhǎng)度記作y , y和y關(guān)于時(shí)間t的函數(shù)變化情況如圖所示.

(1)由圖2可知,點(diǎn)M的運(yùn)動(dòng)速度是每秒 cm,當(dāng)t為何值時(shí),四邊形PQCM是平行四邊形?在圖2中反映這一情況的點(diǎn)是;
(2)設(shè)四邊形PQCM的面積為ycm2 , 求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使S四邊形PQCM= SABC?若存在,求出t的值;若不存在,說明理由;
(4)連接PC,是否存在某一時(shí)刻t,使點(diǎn)M在線段PC的垂直平分線上?若存在,求出此時(shí)t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB10,AC2,BC邊上的高AD6,則另一邊BC等于_______

【答案】106

【解析】試題解析:根據(jù)題意畫出圖形,如圖所示,

如圖1所示,AB=10,AC=2,AD=6,

在RtABD和RtACD中,

根據(jù)勾股定理得:BD==8,CD==2,

此時(shí)BC=BD+CD=8+2=10;

如圖2所示,AB=10,AC=2AD=6,

在RtABD和RtACD中,

根據(jù)勾股定理得:BD==8,CD==2,

此時(shí)BC=BD-CD=8-2=6,

BC的長(zhǎng)為6或10.

型】填空
結(jié)束】
12

【題目】在平面直角坐標(biāo)系中,已知一次函數(shù)y=2x+1的圖象經(jīng)過P1(x1,y1)、P2(x2,y2)兩點(diǎn),若x1<x2,則y1 ______ y2.(填“>”“<”或“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】①在數(shù)軸上沒有點(diǎn)能表示+1;②無理數(shù)是開不盡方的數(shù);③存在最小的實(shí)數(shù);④4的平方根是±2,用式子表示是=±2;⑤某數(shù)的絕對(duì)值,相反數(shù),算術(shù)平方根都是它本身,則這個(gè)數(shù)是0,其中正確的是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x﹣2與反比例函數(shù)y= 的圖像交于點(diǎn)A(3,1)和點(diǎn)B.
(1)求k的值及點(diǎn)B的坐標(biāo);
(2)若點(diǎn)P是坐標(biāo)平面內(nèi)一點(diǎn),且以A,O,B,P為頂點(diǎn)構(gòu)成一個(gè)平行四邊形,請(qǐng)你直接寫出該平行四邊形對(duì)角線交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,對(duì)角線ACBD交于點(diǎn)O,BE平分∠ABCAC于點(diǎn)F,交AD于點(diǎn)E,且∠DBF=15°,求證:(1AO=AE; (2)FEO的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案