【題目】一次函數(shù)的圖象經(jīng)過點

(1)求這個函數(shù)表達(dá)式;

(2)畫出該函數(shù)的圖像;

(3)寫出把這條直線向下平移個單位長度后的函數(shù)關(guān)系式是

(4)求平移后的圖像與兩條坐標(biāo)軸圍成的三角形的面積.

【答案】1;(2)見解析;(3;(4

【解析】

1)將代入函數(shù)解析式,求出k的值即可解題,2)找到直線與x,y軸的交點,利用兩點確定一條直線,作出直線即可,3)根據(jù)左加右減,上加下減的平移規(guī)律即可直接寫出平移后的直線解析式,4)找到直線與x,y軸的交點即可解題.

解:(1)一次函數(shù)的圖象經(jīng)過點

,解得:,

一次函數(shù)解析式為:;

當(dāng),則,當(dāng),則,

如圖所示

4)由上一問可知,直線x軸的交點是(, y軸的交點是(

與兩條坐標(biāo)軸圍成的三角形的面積=×3×=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在研究相似問題時,甲、乙同學(xué)的觀點如下:

甲:將邊長為3、4、5的三角形按圖1的方式向外擴張,得到新三角形,它們的對應(yīng)邊間距為1,則新三角形與原三角形相似.

乙:將鄰邊為35的矩形按圖2的方式向外擴張,得到新的矩形,它們的對應(yīng)邊間距均為1,則新矩形與原矩形不相似.

對于兩人的觀點,下列說法正確的是( )

A. 兩人都對 B. 兩人都不對 C. 甲對,乙不對 D. 甲不對,乙對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400 m,先到終點的人在終點休息等候?qū)Ψ剑阎紫瘸霭l(fā)4 min,在整個步行過程中,甲、乙兩人的距離y m與甲出發(fā)的時間tmin之間的函數(shù)關(guān)系如圖所示.

1)甲步行的速度為 m/min;

2)解釋點P16,0)的實際意義;

3)乙走完全程用了多少分鐘?

4)乙到達(dá)終點時,甲離終點還有多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是∠AOB內(nèi)任意一點,且∠AOB=40°,點M和點N分別是射線OA和射線OB上的動點,當(dāng)PMN周長取最小值時,則∠MPN的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線與直線,它們在同一個坐標(biāo)系中的圖像大致( ).

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末,甲從家出發(fā)前往與家相距千米的旅游景點旅游,千米/時的速度步行小時后,改騎自行車以千米/時的速度繼續(xù)向目的地出發(fā),乙在甲前面千米處,在甲出發(fā)小時后開車追趕甲,兩人同時到達(dá)目的地.設(shè)甲、乙兩人離甲家的距離(千米)與甲出發(fā)的時間(小時)之間的函數(shù)關(guān)系如圖所示.

(1)求乙的速度;

(2)求甲出發(fā)多長時間后兩人第一次相遇;

(3)求甲出發(fā)幾小時后兩人相距千米. .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)的圖象過點

這個反比例函數(shù)圖象分布在哪些象限?的增大而如何變化?

,哪些點在圖象上?

畫出這個函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,,,點邊上一點,連接. 交于點,且.

1)求證:

2)若,. 的長 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將兩個完全相同的三角形紙片ABCDEC重合放置,其中C=900,B=E=300.

1)操作發(fā)現(xiàn)如圖2,固定ABC,使DEC繞點C旋轉(zhuǎn)。當(dāng)點D恰好落在BC邊上時,填空:線段DEAC的位置關(guān)系是 ;

設(shè)BDC的面積為S1AEC的面積為S2。則S1S2的數(shù)量關(guān)系是 。

2)猜想論證

當(dāng)DEC繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中S1S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了BDCAECBC,CE邊上的高,請你證明小明的猜想。

3)拓展探究

已知ABC=600,D是其角平分線上一點,BD=CD=4,OEABBC于點E(如圖4),若在射線BA上存在點F,使SDCF =SBDC,直接寫出相應(yīng)的BF的長

查看答案和解析>>

同步練習(xí)冊答案