【題目】為倡導(dǎo)積極健康的生活方式、豐富居民生活,區(qū)推出系列文化活動,其中的乒乓球比賽采用單循環(huán)賽制(即每兩名參賽者之間都要進(jìn)行一場比賽)經(jīng)統(tǒng)計,此次乒乓球比賽男子組共要進(jìn)行28場單打.

1)參加此次乒乓球男子單打比賽的選手有多少名?

2)在系列文化活動中,社區(qū)與某旅行社合作組織“豐收節(jié)”采摘活動收費標(biāo)準(zhǔn)是:如果人數(shù)不超過20人,每人收費200元;如果超過20人,每增加1人,每人費用都減少5元經(jīng)統(tǒng)計,社區(qū)共支付“采摘活動”費用4500元求參加此次“豐收節(jié)”采摘的人數(shù).

【答案】1)參加此次乒乓球男子單打比賽的選手有8名;(2)參加此次“豐收節(jié)”采摘的人數(shù)為30.

【解析】

1)設(shè)參加此次乒乓球男子單打比賽的選手有x名根據(jù)題意,找等量關(guān)系列出方程,解方程即可得到答案;

2)設(shè)參加此次“豐收節(jié)”采摘的人數(shù)為y人,根據(jù)題意,先確定y>20,然后列出方程,解方程求出y的值即可.

解:(1)設(shè)參加此次乒乓球男子單打比賽的選手有x名,

根據(jù)題意,得:.

解得:,(不符合題意,舍去);

∴參加此次乒乓球男子單打比賽的選手有8名.

2)設(shè)參加此次“豐收節(jié)”采摘的人數(shù)為y人,

,

;

根據(jù)題意,得.

解得:.

∴參加此次“豐收節(jié)”采摘的人數(shù)為30.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣2x24x+6

(1)用配方法求出函數(shù)的頂點坐標(biāo);

(2)將該二次函數(shù)圖象向右平移幾個單位,可使平移后所得圖象經(jīng)過坐標(biāo)原點?并直接寫出平移后所得圖象與x軸的另一個交點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ADBC于點D,點FAB上一點,連接CF,過點BBEBCCF的延長線于點E,交AD于點H,且∠1=2

1)求證:AB=AC

2)若∠1=22°,∠AFC=110°,求∠BCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園空地上有一面墻,長度為20m,用長為32m的籬笆和這面墻圍成一個矩形花圃,如圖所示.

(1)能圍成面積是126m2的矩形花圃嗎?若能,請舉例說明;若不能,請說明理由.

(2)若籬笆再增加4m,圍成的矩形花圃面積能達(dá)到170m2嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E,F分別是正方形ABCD內(nèi)部、外部的點,四邊形ADFE與四邊形BCFE均為菱形,連接AF,BF.有如下四個結(jié)論:①;②;③EF垂直平分DC;④;其中正確的是(

A.①②④B.①②③C.①③④D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象的一支在平面直角坐標(biāo)系中的位置如圖所示,根據(jù)圖象回答下列問題:

(1)圖象的另一支在第________象限;在每個象限內(nèi),的增大而________;

(2)常數(shù)的取值范圍是________;

(3)若此反比例函數(shù)的圖象經(jīng)過點,求的值.點是否在這個函數(shù)圖象上?點呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】淇淇和嘉嘉在學(xué)習(xí)了利用相似三角形測高之后分別測量兩個旗桿高度.

(1)如圖1所示,淇淇將鏡子放在地面上,然后后退直到她站直身子剛好能從鏡子里看到旗桿的頂端E,測得腳掌中心位置B到鏡面中心C的距離是50cm,鏡面中心C距離旗桿底部D的距離為4m,已知淇淇同學(xué)的身高是1.54m,眼睛位置A距離淇淇頭頂?shù)木嚯x是4cm,求旗桿DE 的高度.

如圖2所示,嘉嘉在某一時刻測得 1 米長的竹竿豎直放置時影長2米,在同時刻測量旗桿的影長時,旗桿的影子一部分落在地面上(BC),另一部分落在斜坡上(CD),他測得落在地面上的影長為10米,落在斜坡上的影長為米,∠DCE=45°,求旗桿AB的高度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在菱形ABCD中,AB=4,∠BAD=120°,點E、F分別在菱形的邊BCCD上運動,且∠EAF=60°E、F不與B、C、D重合,連接ACEFP點.

(1)證明:不論E、FBCCD上如何運動,總有BE=CF

(2)當(dāng)BE=1時,求AP的長;

(3)當(dāng)點EFBC、CD上滑動時,分別探討四邊形AECFCEF的面積是否發(fā)生變化?如果不變,直接寫出這個定值;如果變化,是最大值還是最小值?并直接寫出最大(或最小)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線yx2+ax+b經(jīng)過點A(20),B(1,3)

(1)求拋物線的解析式;

(2)由圖象直接寫出:x取何值時,yx的增大而減少;

(3)根據(jù)圖象回答:x取何值時,y0

查看答案和解析>>

同步練習(xí)冊答案