【題目】如圖,△ABC的外角∠ACD的平分線CP與內(nèi)角∠ABC的平分線BP交于點(diǎn)P,若∠BPC=40°,則∠CAP=( 。
A. 40°B. 45°C. 50°D. 60°
【答案】C
【解析】
根據(jù)外角與內(nèi)角性質(zhì)得出∠BAC的度數(shù),再利用角平分線的性質(zhì)以及直角三角形全等的判定,得出∠CAP=∠FAP,即可得出答案.
解:延長BA,作PN⊥BD,PF⊥BA,PM⊥AC,
設(shè)∠PCD=x°,
∵CP平分∠ACD,
∴∠ACP=∠PCD=x°,PM=PN,
∵BP平分∠ABC,
∴∠ABP=∠PBC,PF=PN,
∴PF=PM,
∵∠BPC=40°,
∴∠ABP=∠PBC=∠PCD﹣∠BPC=(x﹣40)°,
∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,
∴∠CAF=100°,
在Rt△PFA和Rt△PMA中,
,
∴Rt△PFA≌Rt△PMA(HL),
∴∠FAP=∠PAC=50°.
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個(gè)小正方形的邊長都為1.在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對應(yīng)點(diǎn)B′.
(1)在給定方格紙中畫出平移后的△A′B′C′;
(2)畫出AB邊上的中線CD和BC邊上的高線AE;
(3)線段AA′與線段BB′的關(guān)系是: ;
(4)求△A′B′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為4的等邊三角形,D為AB邊的中點(diǎn),以CD為直徑畫圓,則圖中陰影部分的面積為(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù) 的圖象交于A(﹣2,1),B(1,n)兩點(diǎn).
(1)試確定上述反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=6.點(diǎn)E在邊AB上,點(diǎn)F在邊CD上,點(diǎn)G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是( )
A.2
B.3
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)O是正方形ABCD對角線BD的中點(diǎn).
(1)如圖1,若點(diǎn)E是OD的中點(diǎn),點(diǎn)F是AB上一點(diǎn),且使得∠CEF=90°,過點(diǎn)E作ME∥AD,交AB于點(diǎn)M,交CD于點(diǎn)N.
①∠AEM=∠FEM; ②點(diǎn)F是AB的中點(diǎn);
(2)如圖2,若點(diǎn)E是OD上一點(diǎn),點(diǎn)F是AB上一點(diǎn),且使 = = ,請判斷△EFC的形狀,并說明理由;
(3)如圖3,若E是OD上的動(dòng)點(diǎn)(不與O,D重合),連接CE,過E點(diǎn)作EF⊥CE,交AB于點(diǎn)F,當(dāng) = 時(shí),請猜想 的值(請直接寫出結(jié)論).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在6×6的正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,點(diǎn)A、B、C、D、E、F、M、N、P均為格點(diǎn)(格點(diǎn)是指每個(gè)小正方形的頂點(diǎn)).
(1)利用圖①中的網(wǎng)格,過P點(diǎn)畫直線MN的平行線和垂線.
(2)把圖②網(wǎng)格中的三條線段AB、CD、EF通過平移使之首尾順次相接組成一個(gè)三角形(在圖②中畫出三角形).
(3)第(2)小題中線段AB、CD、EF首尾順次相接組成一個(gè)三角形的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,將兩塊直角三角尺的直角頂點(diǎn)C疊放在一起,若∠DCE=35°,則∠ACB=_____;若∠ACB=140°,則∠DCE=_______;
(2)猜想∠ACB與∠DCE的大小有何特殊關(guān)系,并說明理由;
(3)如圖2,若是兩個(gè)同樣的直角三角尺60°銳角的頂點(diǎn)A重合在一起,則∠DAB與∠CAE的大小又有何關(guān)系,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相較于點(diǎn)O,OE⊥AB與點(diǎn)O,OB平分∠DOF,∠DOE=62°.
求∠AOC、∠EOF、∠COF的度數(shù)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com