【題目】如圖,△ABC是邊長為4的等邊三角形,D為AB邊的中點,以CD為直徑畫圓,則圖中陰影部分的面積為(結(jié)果保留π).
【答案】2.5 ﹣π
【解析】解:過點O作OE⊥AC于點E,連接FO,MO,
∵△ABC是邊長為4的等邊三角形,D為AB邊的中點,以CD為直徑畫圓,
∴CD⊥AB,∠ACD=∠BCD=30°,AC=BC=AB=4,
∴∠FOD=∠DOM=60°,AD=BD=2,
∴CD=2 ,則CO=DO= ,
∴EO= ,EC=EF= ,則FC=3,
∴S△COF=S△COM= × ×3= ,
S扇形OFM= =π,
S△ABC= ×CD×4=4 ,
∴圖中影陰部分的面積為:4 ﹣2× ﹣π=2.5 ﹣π.
故答案為:2.5 ﹣π.
根據(jù)等邊三角形的性質(zhì)以及勾股定理得出△COF,△COM,△ABC以及扇形FOM的面積,進而得出陰影部分的面積.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,BD平分∠ABC,且AD⊥BD,E為AC的中點,AD=6cm,BD=8cm,BC=16cm,則DE的長為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線MN與直線PQ垂直相交于O,點A在直線PQ上運動,點B在直線MN上運動.
(1)如圖1,已知AE、BE分別是∠BAO和∠ABO角的平分線,點A、B在運動的過程中,∠AEB的大小是否會發(fā)生變化?若發(fā)生變化,請說明變化的情況;若不發(fā)生變化,試求出∠AEB的大。
(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點A、B在運動的過程中,∠CED的大小是否會發(fā)生變化?若發(fā)生變化,請說明理由;若不發(fā)生變化,試求出其值.
(3)如圖3,延長BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及延長線相交于E、F,在△AEF中,如果有一個角是另一個角的3倍,試求∠ABO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=x+k與y= (k為常數(shù),k≠0)的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形的一條邊與另一條邊的反向延長線組成的角,叫做三角形的外角。如圖,點D為BC延長線上一點,則∠ACD為△ABC的一個外角。
求證:∠ACD=∠A+∠B
證明:過點C作CE∥AB(過直線外一點 )
∴∠B= ( )
∠A= ( )
∵∠ACD=∠1+∠2
∴∠ACD=∠ +∠B(等量代換)
應(yīng)用:如圖是一個五角星,請利用上述結(jié)論求
∠A+∠B+∠C+∠D+∠E的值為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關(guān).第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率是 .
(2)如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關(guān)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示,(每個小方格都是邊長為1個單位長度的正方形).
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)將△ABC繞著點A順時針旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出點B2,C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的外角∠ACD的平分線CP與內(nèi)角∠ABC的平分線BP交于點P,若∠BPC=40°,則∠CAP=( 。
A. 40°B. 45°C. 50°D. 60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于兩點A(﹣4,0)和B(1,0),與y軸交于點C(0,2),動點D沿△ABC的邊AB以每秒2個單位長度的速度由起點A向終點B運動,過點D作x軸的垂線,交△ABC的另一邊于點E,將△ADE沿DE折疊,使點A落在點F處,設(shè)點D的運動時間為t秒.
(1)求拋物線的解析式和對稱軸;
(2)是否存在某一時刻t,使得△EFC為直角三角形?若存在,求出t的值;若不存在,請說明理由;
(3)設(shè)四邊形DECO的面積為s,求s關(guān)于t的函數(shù)表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com