【題目】四張背面完全相同的紙牌(如圖,用①、②、③、④表示),正面分別寫有四個不同的條件.小明將這4張紙牌背面朝上洗勻后,先隨機抽出一張(不放回),再隨機抽出一張.
(1)寫出兩次摸牌出現(xiàn)的所有可能的結果(用①、②、③、④表示);
(2)以兩次摸出的牌面上的結果為條件,求能判斷四邊形ABCD為平行四邊形的概率.
科目:初中數(shù)學 來源: 題型:
【題目】(問題提出)
“不以規(guī)矩,不能成方圓.”——孟子;“圓,一中同長也.”——墨經(jīng).
(1)圓,一中同長也.”體現(xiàn)了古代先哲對“圓”定義的思考,請用現(xiàn)代文翻譯:____.
(初步思考)
圓規(guī)是我們初中幾何學習不可或缺的工具,用圓規(guī)不僅可以畫圓、畫弧,還可以畫弧與弧的交點,利用這一特征可以構造很多圖形,如:
(2)角平分線:如圖1,只用圓規(guī)在∠AOB中畫出一點P使得點P在∠AOB的角平分線上;對稱點:如圖2,只用圓規(guī)畫出點P關于直線l的對稱點Q,并說明理由.
(操作與應用)
(3)已知點A、直線l.在圖3中只用圓規(guī)在直線l上畫出兩點B、C,使得A、B、C恰好是等腰三角形的3個頂點,(畫出一個并寫出相等線段即可):
已知點P、直線l.在圖4中只用圓規(guī)畫出一點Q,使得點P、Q所在的直線與直線l平行.(提示:平行四邊形對邊平行).
(4)已知點O、A、B,只用圓規(guī)畫出半徑為AB的⊙O與點A、B所在直線的交點C、D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中AB=,BC=1,將矩形ABCD繞頂點B旋轉得到矩形A'BC'D,點A恰好落在矩形ABCD的邊CD上,則AD掃過的部分(即陰影部分)面積為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線l1:y=x-3與x軸,y軸分別交于點A和點B.
(1)求點A和點B的坐標;
(2)將直線l1向上平移6個單位后得到直線l2,求直線l2的函數(shù)解析式;
(3)設直線l2與x軸的交點為M,則△MAB的面積是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關系:
(1)求出y與x之間的函數(shù)關系式;
(2)寫出每天的利潤W與銷售單價x之間的函數(shù)關系式;若你是商場負責人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是( 。
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 已知拋物線的對稱軸是直線x=3,且與x軸相交于A,B兩點(B點在A點右側)與y軸交于C點 .
(1)求拋物線的解析式和A、B兩點的坐標;
(2)若點P是拋物線上B、C兩點之間的一個動點(不與B、C重合),則是否存在一點P,使△PBC的面積最大.若存在,請求出△PBC的最大面積;若不存在,試說明理由;
(3)若M是拋物線上任意一點,過點M作y軸的平行線,交直線BC于點N,當MN=3時,求M點的坐標 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)了一款健身器材,可通過實體店和網(wǎng)上商店兩種途徑進行銷售,銷售了一段時間后,該企業(yè)對這種健身器材的銷售情況進行了為期30天的跟蹤調(diào)查,其中實體店的日銷售量y1(套)與時間x(x為整數(shù),單位:天)的部分對應值如下表所示:
時間x(天) | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
日銷售量y(套) | 0 | 25 | 40 | 45 | 40 | 25 | 0 |
(1)求出y1與x的二次函數(shù)關系式及自變量x的取值范圍
(2)若網(wǎng)上商店的日銷售量y2(套)與時間x(x為整數(shù),單位:天)的函數(shù)關系為,則在跟蹤調(diào)查的30天中,設實體店和網(wǎng)上商店的日銷售總量為y(套),求y與x的函數(shù)關系式;當x為何值時,日銷售總量y達到最大,并寫出此時的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A(﹣1,0)、C(0,3),與x軸交于另一點B,拋物線的頂點為D.
(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com