【題目】已知,ABC是邊長3cm的等邊三角形.動點P1cm/s的速度從點A出發(fā),沿線段AB向點B運動.

(1)如圖1,設(shè)點P的運動時間為ts),那么t   s)時,PBC是直角三角形;

(2)如圖2,若另一動點Q從點B出發(fā),沿線段BC向點C運動,如果動點P、Q都以1cm/s的速度同時出發(fā).設(shè)運動時間為ts),那么t為何值時,PBQ是直角三角形?

(3)如圖3,若另一動點Q從點C出發(fā),沿射線BC方向運動.連接PQACD.如果動點P、Q都以1cm/s的速度同時出發(fā).設(shè)運動時間為ts),那么t為何值時,DCQ是等腰三角形?

(4)如圖4,若另一動點Q從點C出發(fā),沿射線BC方向運動.連接PQACD,連接PC.如果動點P、Q都以1cm/s的速度同時出發(fā).請你猜想:在點P、Q的運動過程中,PCDQCD的面積有什么關(guān)系?并說明理由.

【答案】(1);(2)t=12(s);(3)t=1(s);(4)面積相等,理由見解析

【解析】

(1)當PBC是直角三角形時,∠B=60°,所以BP=1.5cm,即可算出t的值;

(2)因為∠B=60°,可選取∠BPQ=90°或∠BQP=90°,然后根據(jù)勾股定理計算出BP長,即可算出t的大;

(3)因為∠DCQ=120°,當DCQ是等腰三角形時,CDCQ,然后可證明APD是直角三角形,即可根據(jù)題意求出t的值;

(4)面積相等.可通過同底等高驗證.

解:(1)當PBC是直角三角形時,∠B=60°,

BPC=90°,所以BP=1.5cm

所以t.

(2)當∠BPQ=90°時,BP=0.5BQ

3﹣t=0.5t,所以t=2;

當∠BQP=90°時,BP=2BQ,

3﹣t=2t,所以t=1;

所以t=12(s);

(3)因為∠DCQ=120°,當DCQ是等腰三角形時,CDCQ,

所以∠PDACDQCQD=30°,

又因為∠A=60°,

所以AD=2AP,2t+t=3,

解得t=1(s);

(4)相等,如圖所示:

PEADE,QGAD延長線于G,則PEQG,則易知∠GAEP,AACBQCG=60°,

EAPGCQ中,

因為,

所以EAP≌△GCQAAS),

所以PEQG,所以,PCDQCD同底等高,所以面積相等.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為進一步普及我市中小學生的法律知識,提升學生法律意識,在2018124日第五個國家憲法日來臨之際,我市某區(qū)在中小學舉行了學習憲法知識競賽活動,各類獲獎學生人數(shù)的比例情況如圖所示,其中獲得優(yōu)勝獎的學生共400名,請結(jié)合圖中信息,解答下列問題:

(1)求獲得一等獎的學生人數(shù);

(2)在本次知識競賽活動中,A,B,C,D四所學校表現(xiàn)突出,現(xiàn)決定從這四所學校中隨機選取兩所學校舉行一場法律知識搶答賽,請用畫樹狀圖或列表的方法求恰好選到A,B兩所學校的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠ACB=90°,AC=BC,直線l過點C,BDl,AEl,垂足分別為DE

1)當直線l不與底邊AB相交時,求證:ED=AE+BD;

2)如圖2,將直線l繞點C順時針旋轉(zhuǎn),使l與底邊AB相交時,請你探究ED、AEBD三者之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC ,AB=4,BC=6,∠B=60°,ABC沿著射線BC 的方向平移 2 個單位后得到ABC′,連接 ACABC 的周長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在RtABC中,C=90°,沿過B點的一條直線BE折疊這個三角形, 使C點與AB邊上的一點D重合.

(1)當A滿足什么條件時,點D恰為AB的中點?寫出一個你認為適當?shù)臈l件,并利用此條件證明DAB的中點;

(2)在(1)的條件下,若DE=1,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,點D是AB邊的中點,過D作DE⊥BC于點E,點P是邊BC上的一個動點,AP與CD相交于點Q.當AP+PD的值最小時,AQ與PQ之間的數(shù)量關(guān)系是( )

A.AQ= PQ
B.AQ=3PQ
C.AQ= PQ
D.AQ=4PQ

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB=10,點C在射線AB上,且,DAC的中點.

1)依題意,畫出圖形;(2)依照圖形求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點,延長BC至點F,使CF=BC,連接CDEF

1)求證:DE=CF

2)求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電器商場銷售A,B兩種型號計算器,兩種計算器的進貨價格分別為每臺30元,40. 商場銷售5A型號和1B型號計算器,可獲利潤76元;銷售6A型號和3B型號計算器,可獲利120.

1)求商場銷售AB兩種型號計算器的銷售價格分別是多少元?(利潤=銷售價格進貨價格)

2)商場準備用不多于2500元的資金購進AB兩種型號計算器共70臺,問最少需要購進A型號的計算器多少臺?

查看答案和解析>>

同步練習冊答案