【題目】問題:探究函數(shù)y=|x|﹣2的圖象與性質(zhì).

小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=|x|﹣2的圖象與性質(zhì)進(jìn)行了探究.

下面是小華的探究過程,請(qǐng)補(bǔ)充完整:

(1)在函數(shù)y=|x|﹣2中,自變量x可以是任意實(shí)數(shù);

(2)如表是yx的幾組對(duì)應(yīng)值.

x

﹣3

﹣2

﹣1

0

1

2

3

y

1

0

﹣1

﹣2

﹣1

0

m

m=   ;

②若A(n,8),B(10,8)為該函數(shù)圖象上不同的兩點(diǎn),則n=   ;

(3)如圖,在平面直角坐標(biāo)系xOy中,描出以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).并根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;

根據(jù)函數(shù)圖象可得:

①該函數(shù)的最小值為   

②已知直線與函數(shù)y=|x|﹣2的圖象交于C、D兩點(diǎn),當(dāng)y1≥y時(shí)x的取值范圍是   

【答案】(1)補(bǔ)圖見解析;(2)1;﹣10;(3)﹣2;﹣1≤x≤3.

【解析】

(2)①把x=3代入y=|x|-2,即可求出m;
②把y=8代入y=|x|-2,即可求出n;
(3)①畫出該函數(shù)的圖象即可求解;
②在同一平面直角坐標(biāo)系中畫出函數(shù)y1x與函數(shù)y=|x|-2的圖象,根據(jù)圖象即可求出y1≥y時(shí)x的取值范圍.

解:(2)①把x=3代入y=|x|﹣2,得m=3﹣2=1.

故答案為1;

②把y=8代入y=|x|﹣2,得8=|x|﹣2,

解得x=﹣1010,

A(n,8),B(10,8)為該函數(shù)圖象上不同的兩點(diǎn),

n=﹣10.

故答案為﹣10;

(3)該函數(shù)的圖象如圖,

①該函數(shù)的最小值為﹣2;

故答案為﹣2;

②在同一平面直角坐標(biāo)系中畫出函數(shù)y1=x-與函數(shù)y=|x|﹣2的圖象,

由圖形可知,當(dāng)y1≥y時(shí)x的取值范圍是﹣1≤x≤3.

故答案為﹣1≤x≤3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC的周長為20.

1)尺規(guī)作圖,畫出線段AB的垂直平分線(不寫作法,保留作圖痕跡);

2)設(shè)AB的垂直平分線與BA交于點(diǎn)D,與BC交于點(diǎn)E,若AD4,求ACE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)O是矩形ABCD的中心(對(duì)角線的交點(diǎn)),AB=4cm,AD=6cm.點(diǎn)M是邊AB上的一動(dòng)點(diǎn),過點(diǎn)OONOM,交BC于點(diǎn)N,設(shè)AM=x,ON=y,今天我們將根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),研究函數(shù)值y隨自變量x的變化而變化的規(guī)律.

下面是某同學(xué)做的一部分研究結(jié)果,請(qǐng)你一起參與解答:

(1)自變量x的取值范圍是______;

(2)通過計(jì)算,得到了xy的幾組值,如下表:

x/cm

0

0.5

1

1.5

2

2.5

3

3.5

4

y/cm

2.40

2.24

2.11

2.03

__

__

2.11

2.24

2.40

請(qǐng)你補(bǔ)全表格(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留兩位小數(shù),參考數(shù)據(jù):3.04,6.09)

(3)在如圖2所示的平面直角坐標(biāo)系中,畫出該函數(shù)的大致圖象.

(4)根據(jù)圖象,請(qǐng)寫出該函數(shù)的一條性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長;

(2)如果把CAE的周長記作CCAE,BAF的周長記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;

(3)當(dāng)∠ABE的正切值是時(shí),求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在第1個(gè)ABA1B=40°,BAA1=∠BA1A,A1B上取一點(diǎn)C,延長AA1A2,使得在第2個(gè)A1CA2A1CA2=∠A1 A2C;A2C上取一點(diǎn)D延長A1A2A3,使得在第3個(gè)A2DA3A2DA3=∠A2 A3D,按此做法進(jìn)行下去3個(gè)三角形中以A3為頂點(diǎn)的內(nèi)角的度數(shù)為 ;n個(gè)三角形中以An為頂點(diǎn)的內(nèi)角的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b是任意兩個(gè)不等實(shí)數(shù),我們規(guī)定:滿足不等式a≤x≤b的實(shí)數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對(duì)于一個(gè)函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時(shí),有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.如函數(shù)y=﹣x+4,當(dāng)x=1時(shí),y=3;當(dāng)x=3時(shí),y=1,即當(dāng)1≤x≤3時(shí),恒有1≤y≤3,所以說函數(shù)y=﹣x+4是閉區(qū)間[1,3]上的“閉函數(shù)”,同理函數(shù)y=x也是閉區(qū)間[1,3]上的“閉函數(shù)”.

(1)反比例函數(shù)y=是閉區(qū)間[1,2018]上的“閉函數(shù)”嗎?請(qǐng)判斷并說明理由;

(2)如果已知二次函數(shù)y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數(shù)”,求k和t的值;

3)如果(2)所述的二次函數(shù)的圖象交y軸于C點(diǎn),A為此二次函數(shù)圖象的頂點(diǎn),B為直線x=1上的一點(diǎn),當(dāng)ABC為直角三角形時(shí),寫出點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線形拱橋,當(dāng)拱頂高離水面2m時(shí),水面寬4m,水面下降2.5m,水面寬度增加( 。

A. 1 m B. 2 m C. 3 m D. 6 m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12 m,寬是4 m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線上的點(diǎn)COB的水平距離為3 m,到地面OA的距離為m.

(1)求拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;

(2)一輛貨運(yùn)汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?

(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知AOB是等邊三角形,點(diǎn)A的坐標(biāo)是(0,4),點(diǎn)B在第一象限,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),連接AP,并把AOP繞著點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使邊AO與AB重合,得到ABD.

(1)求直線AB的解析式;

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)(,0)時(shí),求此時(shí)DP的長及點(diǎn)D的坐標(biāo);

(3)是否存在點(diǎn)P,使OPD的面積等于?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案