【題目】拋物線y=ax2+bx+1的頂點(diǎn)為D,與x軸正半軸交于A、B兩點(diǎn),A在B左,與y軸正半軸交于點(diǎn)C,當(dāng)△ABD和△OBC均為等腰直角三角形(O為坐標(biāo)原點(diǎn))時(shí),b的值為( 。
A. 2 B. ﹣2或﹣4 C. ﹣2 D. ﹣4
【答案】D
【解析】
根據(jù)題意和函數(shù)圖象,利用二次函數(shù)的性質(zhì)和等腰三角形的性質(zhì),可以求得b的值,本題得以解決.
解:∵拋物線y=ax2+bx+1,
∴x=0時(shí),y=1,
∴點(diǎn)C的坐標(biāo)為(0,1),
∴OC=1,
∵△OBC為等腰直角三角形,
∴OC=OB,
∴OB=1,
∴拋物線y=ax2+bx+1與x軸的一個(gè)交點(diǎn)為(1,0),
∴a+b+1=0,得a=﹣1﹣b,
設(shè)拋物線y=ax2+bx+1與x軸的另一個(gè)交點(diǎn)A為(x1,0),
∴x1×1= ,
∵△ABD為等腰直角三角形,
∴點(diǎn)D的縱坐標(biāo)的絕對(duì)值是AB的一半,
∴,
∴ ,
解得,b=﹣2或b=﹣4,
當(dāng)b=﹣2時(shí),a=﹣1﹣(﹣2)=1,此時(shí)y=x2﹣2x+1=(x﹣1)2,與x軸只有一個(gè)交點(diǎn),故不符合題意,
當(dāng)b=﹣4時(shí),a=﹣1﹣(﹣4)=3,此時(shí)y=3x2﹣4x+1,與x軸兩個(gè)交點(diǎn),符合題意,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,晚上小亮走在大街上,他發(fā)現(xiàn)當(dāng)他站在大街上高度相等的兩盞路燈AB和CD之間時(shí),自己右邊的影子NE的長(zhǎng)為3m,左邊的影子ME的長(zhǎng)為1.5m,又知小亮的身高EF為1.80m,兩盞路燈AC之間的距離為12m,點(diǎn)A、M、E、N、C在同一條直線上,問(wèn):路燈的高為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某射擊隊(duì)要從甲、乙、丙、丁四人中選拔一名選手參賽,在選拔賽中,每人射擊10次,然后從他們的成績(jī)平均數(shù)(環(huán))及方差兩個(gè)因素進(jìn)行分析,甲、乙、丙的成績(jī)分析如表所示,丁的成績(jī)?nèi)鐖D所示.
甲 | 乙 | 丙 | |
平均數(shù) | 7.9 | 7.9 | 8.0 |
方差 | 3.29 | 0.49 | 1.8 |
根據(jù)以上圖表信息,參賽選手應(yīng)選( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,李老師設(shè)計(jì)了一個(gè)探究杠桿平衡條件的實(shí)驗(yàn):在一個(gè)自制類(lèi)似天平的儀器的左邊固定托盤(pán)A中放置一個(gè)重物,在右邊活動(dòng)托盤(pán)B(可左右移動(dòng))中放置一定質(zhì)量的砝碼,使得儀器左右平衡.改變活動(dòng)托盤(pán)B與點(diǎn)O的距離x(cm),觀察活動(dòng)托盤(pán)B中砝碼的質(zhì)量y(g)的變化情況.實(shí)驗(yàn)數(shù)據(jù)記錄如下表:
(1)猜測(cè)y與x之間的函數(shù)關(guān)系,求出函數(shù)關(guān)系式并加以驗(yàn)證;
(2)當(dāng)砝碼的質(zhì)量為24 g時(shí),活動(dòng)托盤(pán)B與點(diǎn)O的距離是多少?
(3)將活動(dòng)托盤(pán)B往左移動(dòng)時(shí),應(yīng)往活動(dòng)托盤(pán)B中添加還是減少砝碼?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)函數(shù)中,圖象經(jīng)過(guò)原點(diǎn)且對(duì)稱軸在y軸左側(cè)的二次函數(shù)是( 。
A. y=x2+2x B. y=x2﹣2x C. y=2(x+1)2 D. y=2(x﹣1)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,△AEC中,∠E=90°,將△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到△ADB,AC與AB對(duì)應(yīng),AE與AD對(duì)應(yīng)
①請(qǐng)證明△ABC為等邊三角形;
②如圖2,BD所在的直線為b,分別過(guò)點(diǎn)A、C作直線b的平行線a、c,直線a、b之間的距離為2,直線a、c之間的距離為7,則等邊△ABC的邊長(zhǎng)為 .
(2)如圖3,∠POQ=60°,△ABC為等邊三角形,點(diǎn)A為∠POQ內(nèi)部一點(diǎn),點(diǎn)B、C分別在射線OQ、OP上,AE⊥OP于E,OE=5,AE=2,求△ABC的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,F在BD上,BC、AD相交于點(diǎn)E,且AB∥CD∥EF,
(1)圖中有哪幾對(duì)位似三角形,選其中一對(duì)加以證明;
(2)若AB=2,CD=3,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】.根據(jù)圖5中①所示的程序,得到了y與x的函數(shù)圖象,如圖5中②,若點(diǎn)M是
y軸正半軸上任意一點(diǎn),過(guò)點(diǎn)M作PQ∥x軸交圖象于點(diǎn)P、Q,連接OP、OQ,則以下結(jié)論:
①x<0時(shí),y=
②△OPQ的面積為定值
③x>0時(shí),y隨x的增大而增大
④MQ=2PM
⑤∠POQ可以等于90°
其中正確結(jié)論是
A.①②④B.②④⑤C.③④⑤D.②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市在黨中央實(shí)施“精準(zhǔn)扶貧”政策的號(hào)召下,大力開(kāi)展科技扶貧工作,幫助農(nóng)民組建農(nóng)副產(chǎn)品銷(xiāo)售公司,某農(nóng)副產(chǎn)品的年產(chǎn)量不超過(guò)100萬(wàn)件,該產(chǎn)品的生產(chǎn)費(fèi)用萬(wàn)元與年產(chǎn)量萬(wàn)件之間的函數(shù)圖象是頂點(diǎn)為原點(diǎn)的拋物線的一部分如圖所示;該產(chǎn)品的銷(xiāo)售單價(jià)元件與年銷(xiāo)售量萬(wàn)件之間的函數(shù)圖象是如圖所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當(dāng)年銷(xiāo)售完,達(dá)到產(chǎn)銷(xiāo)平衡,所獲毛利潤(rùn)為w萬(wàn)元毛利潤(rùn)銷(xiāo)售額生產(chǎn)費(fèi)用
請(qǐng)寫(xiě)出y與x以及z與x之間的函數(shù)關(guān)系式;
求w與x之間的函數(shù)關(guān)系式;并求年產(chǎn)量多少萬(wàn)件時(shí),所獲毛利潤(rùn)最大?最大毛利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com