【題目】已知,如圖點A(1,1),B(2,﹣3),點P為x軸上一點,當|PA﹣PB|最大時,點P的坐標為( 。

A. (﹣1,0) B. ,0) C. ,0) D. (1,0)

【答案】B

【解析】

A關(guān)于x軸對稱點C,連接BC并延長,BC的延長線與x軸的交點即為所求的P點;首先利用待定系數(shù)法即可求得直線BC的解析式,繼而求得點P的坐標.

A關(guān)于x軸對稱點C,連接BC并延長交x軸于點P,

A(1,1),

C的坐標為(1,﹣1),

連接BC,

設(shè)直線BC的解析式為:y=kx+b,

,

解得:,

∴直線BC的解析式為:y=﹣2x+1,

y=0時,x=

∴點P的坐標為:(,0),

∵當B,C,P不共線時,根據(jù)三角形三邊的關(guān)系可得:|PA﹣PB|=|PC﹣PB|<BC,

∴此時|PA﹣PB|=|PC﹣PB|=BC取得最大值.

故選:B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明將一副三角板中的兩塊直角三角尺的直角頂點C按如圖所示的方式疊放在一起,當∠ACE180°且點E在直線AC的上方時,他發(fā)現(xiàn)若∠ACE_____,則三角板BCE有一條邊與斜邊AD平行.(寫出所有可能情況)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC,AB=AC,DBC的中點,AC為腰向外作等腰直角△ACE,∠EAC=90°,連接BE,AD于點F,AC于點G.

(1)∠BAC=40°,求∠AEB的度數(shù);

(2)求證:∠AEB=∠ACF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小敏從A地出發(fā)向B地行走,同時小聰從B地出發(fā)向A地行走,如圖所示,相交于點P的兩條線段l1、l2分別表示小敏、小聰離B地的距離y(km)與已用時間x(h)之間的關(guān)系,則小敏、小聰行走的速度分別是(  )

A. 3km/h4km/h B. 3km/h3km/h

C. 4km/h4km/h D. 4km/h3km/h

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)如圖,在直角坐標系xOy中,A(﹣1,0),B(3,0),將A,B同時分別向上平移2個單位,再向右平移1個單位,得到的對應(yīng)點分別為DC,連接ADBC.

(1)直接寫出點C,D的坐標:C ,D

(2)四邊形ABCD的面積為 ;

(3)點P為線段BC上一動點(不含端點),連接PDPO.求證:∠CDP+BOP=OPD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)校組織的朗誦比賽中,甲、乙兩名學(xué)生以抽簽的方式從3篇不同的文章中抽取一篇參加比賽,抽簽規(guī)則是:在3個相同的標簽上分別標注字母A、B、C,各代表1篇文章,一名學(xué)生隨機抽取一個標簽后放回,另一名學(xué)生再隨機抽取.用畫樹狀圖或列表的方法列出所有等可能的結(jié)果,并求甲、乙抽中同一篇文章的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把 個邊長為1的正方形拼接成一排,求得 , , ,計算 , ……按此規(guī)律,寫出 (用含 的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了鼓勵居民節(jié)約用水,采用分階段計費的方法按月計算每戶家庭的水費:月用水量不超過20m3時,按2/m3計算;月用水量超過20m3時,其中的20m3仍按2/m3計算,超過部分按2.6/m3計算.設(shè)某戶家庭月用水量xm3

月份

4

5

6

用水量

15

17

21

(1)用含x的式子表示:

0≤x≤20時,水費為   元;

x>20時,水費為   元.

(2)小花家第二季度用水情況如上表,小花家這個季度共繳納水費多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,BC=8cmAC=6cm,點EBC的中點,動點PA點出發(fā),先以每秒2cm的速度沿AC運動,然后以1cm/s的速度沿CB運動.若設(shè)點P運動的時間是t秒,那么當t=_______,APE的面積等于8

查看答案和解析>>

同步練習冊答案