【題目】如圖所示,已知在△ABC中,∠C=90°,AC=5,AB=13.點D在邊AC上,且點D到邊AB和邊BC的距離相等.

(1)用直尺圓規(guī)作出點D(不寫作法,保留作圖痕跡,在圖上標注清楚點D);

(2)求△ABD的面積.

【答案】(1)詳見解析;(2).

【解析】

(1)作∠ABC的角平分線交ACD,則根據(jù)角平分線的性質(zhì)可判斷點D到邊AB和邊BC的距離相等;

(2)過點DDEABE,如圖,利用勾股定理計算出BC=12,設DE=x,則DC=x,利用SADB+SBCD=SABC得到x13+x12=125,然后解方程求出x即可.

(1)如圖,點D就是所要求作的點;

(2)過點DDEABE,如圖,

RtABC中,BC==12,

DE=x,則DC=x,

SADB+SBCD=SABC

x13+x12=125,

x=,

SADB=ABDE=×13×=.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,△ACB△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點DAB邊上的一點,若AB=17,BD=12,

1)求證:△BCD≌△ACE;

2)求DE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E,F(xiàn),G,H分別是BD,BC,AC,AD的中點,且AB=CD,下列結論:①EG⊥FH;②四邊形EFGH是菱形;HF平分∠EHG;④EG=(BC﹣AD),其中正確的個數(shù)是( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的文字,解答問題:大家知道 是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此 的小數(shù)部分我們不可能全部地寫出來,于是小明用 ﹣1來表示 的小數(shù)部分,你同意小明的表示方法嗎?事實上,小明的表示方法是有道理的,因為 的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.又例如:∵22<( 2<32 , 即2< <3,∴ 的整數(shù)部分為2,小數(shù)部分為( ﹣2). 請解答:
(1) 的整數(shù)部分是 , 小數(shù)部分是
(2)如果 的小數(shù)部分為a, 的整數(shù)部分為b,求a+b﹣ 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標平面內(nèi)已點A3,0)、B(-5,3),將點A向左平移6個單位到達C,將點B向下平移6個單位到達D

1)寫出C點、D點的坐標C __________,D ____________ ;

2)把這些點按ABCDA順次連接起來,這個圖形的面積是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列幾何體中,主視圖、俯視圖、左視圖都相同的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了參加學校舉行的傳統(tǒng)文化知識競賽,某班進行了四次模擬訓練,將成績優(yōu)秀的人數(shù)和優(yōu)秀率繪制成如下兩個不完整的統(tǒng)計圖:
請根據(jù)以上兩圖解答下列問題:
(1)該班總人數(shù)是;
(2)根據(jù)計算,請你補全兩個統(tǒng)計圖;
(3)觀察補全后的統(tǒng)計圖,寫出一條你發(fā)現(xiàn)的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如下圖所示,在△ABC中,∠ACB=90°,AC=BC,BECE于點E,ADCE于點D.DE=6cm,AD=9cm,則BE的長是(

A. 6cm B. 1.5cm C. 3cm D. 4.5cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀對人成長的影響是巨大的,一本好書往往能改變?nèi)说囊簧鐖D是某校三個年級學生人數(shù)分布扇形統(tǒng)計圖,其中八年級人數(shù)為408人,表是該校學生閱讀課外書籍情況統(tǒng)計表.請你根據(jù)圖表中的信息,解答下列問題:

圖書種類

頻數(shù)

頻率

科普常識

840

B

名人傳記

816

0.34

漫畫叢書

A

0.25

其它

144

0.06

(1)求該校八年級的人數(shù)占全?側藬(shù)的百分率.

(2)求表中A,B的值.

(3)該校學生平均每人讀多少本課外書?

查看答案和解析>>

同步練習冊答案