【題目】在平面直角坐標(biāo)系中,點(diǎn),為反比例函數(shù)上的兩個(gè)動(dòng)點(diǎn),以,為頂點(diǎn)構(gòu)造菱形.
(1)如圖1,點(diǎn),橫坐標(biāo)分別為1,4,對(duì)角線(xiàn)軸,菱形面積為.求的值.
(2)如圖2,當(dāng)點(diǎn),運(yùn)動(dòng)至某一時(shí)刻,點(diǎn),點(diǎn)恰好落在軸和軸正半軸上,此時(shí).求點(diǎn),的坐標(biāo).
【答案】(1);(2),
【解析】
(1) 由菱形的性質(zhì)可得BD=2BE=6, AC⊥DB,由菱形的面積公式可求AC= ,設(shè)點(diǎn)B (4,a),則點(diǎn)A (1, +a),代入解析式可求a的值,即可求k的值;
(2)過(guò)點(diǎn)A作AE⊥y軸于點(diǎn)E,過(guò)點(diǎn)B作BF⊥x軸于點(diǎn)F,設(shè)點(diǎn)A (m, ),由全等三角形的性質(zhì)可得AE=DO=CF=m, DE=OC=BF=-m,可求點(diǎn)B坐標(biāo),代入解析式可求解.
(1)如圖,連結(jié)交于點(diǎn).
∵,的橫坐標(biāo)分別為1,4,軸.
∴
∵菱形的對(duì)角線(xiàn),相交于點(diǎn)
∴,AC⊥DB
∵
∴
∴AE=CE=
設(shè),
∵點(diǎn),都在反比例函數(shù)上
∴解得.
∴.
(2)如圖,過(guò)點(diǎn)作軸,過(guò)點(diǎn)作軸.
由(1)可知點(diǎn),在反比例函數(shù)上,設(shè)
∵菱形中,
∴四邊形是正方形
∴,
∴∠ADM+∠MAD=90°,∠MDA+∠CDO=90°,∠DCO+∠CDO=90°,∠BCN+∠DCO=90°,
∴∠MAD=∠CDO=∠BCN,且∠AMD=∠DOC=∠CNB90°,AD=CD=BC,
∴.
∴,
∴.
∴.
由此可知點(diǎn)的坐標(biāo)為,
將點(diǎn)代入得
或(舍去)
∴,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】初三第一輪復(fù)習(xí)重在查漏補(bǔ)缺,課后很重要的一項(xiàng)任務(wù)是“糾錯(cuò)”.在深大附中九年級(jí)隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查,對(duì)平時(shí)的錯(cuò)題:表示“每一道錯(cuò)題都解決了”,表示“大部分錯(cuò)題解決了”,表示“只有一部分錯(cuò)題解決了”,表示“從不解決錯(cuò)題”.對(duì)抽取的學(xué)生問(wèn)卷統(tǒng)計(jì)后如圖:
(1)抽查的學(xué)生有______人;扇形統(tǒng)計(jì)圖中,占比_______;占比_______.
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)全年級(jí)有480人,估計(jì)對(duì)錯(cuò)題“全解決”和“大部分解決”共有多少學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線(xiàn)如圖所示,它與二次函數(shù)y=ax2-2ax+c的圖像交于A、B兩點(diǎn)(其中點(diǎn)A在點(diǎn)B的左側(cè)),與這個(gè)二次函數(shù)圖像的對(duì)稱(chēng)軸交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)設(shè)二次函數(shù)圖像的頂點(diǎn)為D.若AD的垂直平分線(xiàn)經(jīng)過(guò)點(diǎn)C,且.求此二次函數(shù)的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】北中環(huán)橋是省城太原的一座跨汾河大橋(如圖1),它由五個(gè)高度不同,跨徑也不同的拋物線(xiàn)型鋼拱通過(guò)吊橋,拉鎖與主梁相連,最高的鋼拱如圖2所示,此鋼拱(近似看成二次函數(shù)的圖象-拋物線(xiàn))在同一豎直平面內(nèi),與拱腳所在的水平面相交于A,B兩點(diǎn),拱高為78米(即最高點(diǎn)O到AB的距離為78米),跨徑為90米(即AB=90米),以最高點(diǎn)O為坐標(biāo)原點(diǎn),以平行于AB的直線(xiàn)為軸建立平面直角坐標(biāo)系,則此拋物線(xiàn)鋼拱的函數(shù)表達(dá)式為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)(m,n 為常數(shù)).
(1)若拋物線(xiàn)的的對(duì)稱(chēng)軸為直線(xiàn) x=1,且經(jīng)過(guò)點(diǎn)(0,-1),求 m,n 的值;
(2)若拋物線(xiàn)上始終存在不重合的兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),求 n 的取值范圍;
(3)在(1)的條件下,存在正實(shí)數(shù) a,b( a<b),當(dāng) a≤x≤b 時(shí),恰好有,請(qǐng)直接寫(xiě)出 a,b 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷(xiāo)售一種名牌襯衫,平均每天可售出20件,每件盈利40元,為了擴(kuò)大銷(xiāo)售,增加盈利,盡量減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)1元,商場(chǎng)平均每天可多售出2件,
(1)若商場(chǎng)平均每天要盈利1200元,每件襯衫應(yīng)降價(jià)多少元?
(2)當(dāng)每件襯衫降價(jià)多少元時(shí),商場(chǎng)每天獲利最大,每天獲利最大是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=(x>0)的圖象經(jīng)過(guò)菱形OACD的頂點(diǎn)D和邊AC上的一點(diǎn)E,且CE=2AE,菱形的邊長(zhǎng)為8,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)(a,b為常數(shù),且)與反比例函數(shù)(m為常數(shù),且)的圖象交于點(diǎn)A(﹣2,1)、B(1,n).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連結(jié)OA、OB,求△AOB的面積;
(3)直接寫(xiě)出當(dāng)時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為等邊三角形,點(diǎn)是線(xiàn)段上一點(diǎn)(不與,重合).將線(xiàn)段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線(xiàn)段,連結(jié),.
(1)依題意補(bǔ)全圖1并判斷與的數(shù)量關(guān)系.
(2)過(guò)點(diǎn)作交延長(zhǎng)線(xiàn)于點(diǎn),用等式表示線(xiàn)段,與之間的數(shù)量關(guān)系并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com