【題目】如圖,在RtABC中,∠C90°,以頂點A為圓心,適當長為半徑畫弧,分別交AC、AB于點M、N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D.若AC9AB15,且SABC54,則ABD的面積是(  )

A. B. C. 45D. 35

【答案】B

【解析】

先利用勾股定理計算出BC=12,作DHABH,如圖,設(shè)DH=x,則BD=12-x,利用作法得AD為∠BAC的平分線,則根據(jù)角平分線的性質(zhì)得CD=DH=x,接著證明ADC≌△ADH得到AH=AC=9,所以BH=6,然后在RtBDH中利用勾股定理得到62+x2=(12x2,最后解方程求出x,然后根據(jù)三角形的面積公式即可得到結(jié)論.

解:在RtACB中,BC12,

DHABH,如圖,設(shè)DHx,則BD9x,

由作法得AD為∠BAC的平分線,

CDDHx,

RtADCRtADH中, ,

∴△ADC≌△ADH,(HL),

AHAC9

BH1596,

RtBDH中,62+x2=(12x2,解得x,

∴△ABD的面積=ABDH×15

故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某市移動通訊公司開設(shè)了兩種通訊業(yè)務(wù),A類是固定用戶:先繳50元月租費,然后每通話1分鐘再付話費0.4元;B類是“神州行”用戶:使用者不繳月租費,每通話1分鐘付話費0.6元(這里均指市內(nèi)通話)。如果一個月內(nèi)通話時間為x分鐘,分別設(shè)A類和B類兩種通訊方式的費用為y元和y元,

(1)寫出y、y與x之間的函數(shù)關(guān)系式。

(2)一個月內(nèi)通話多少分鐘,用戶選擇A類合算?B類呢?

(3)若某人預計使用話費150元,他應(yīng)選擇哪種方式合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,BC=10,AB=,∠ABC=30°,點P在直線AC上,點P到直線AB的距離為1,則CP的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,,、、在同一直線上,則的度數(shù)為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:

(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.

(2)彈珠在軌道上行駛的最大速度.

【答案】(1)v=(2<t≤5) (2)8米/分

【解析】分析:(1)由圖象可知前一分鐘過點(1,2),后三分鐘時過點(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;

(2)把t=2代入(1)中二次函數(shù)解析式即可.

詳解:(1)v=at2的圖象經(jīng)過點(1,2),

a=2.

∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);

設(shè)反比例函數(shù)的解析式為v=,

由題意知,圖象經(jīng)過點(2,8),

k=16,

∴反比例函數(shù)的解析式為v=(2<t≤5);

(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開口向上,對稱軸為y軸,

∴彈珠在軌道上行駛的最大速度在2秒末,為8/分.

點睛:本題考查了反比例函數(shù)和二次函數(shù)的應(yīng)用.解題的關(guān)鍵是從圖中得到關(guān)鍵性的信息:自變量的取值范圍和圖象所經(jīng)過的點的坐標.

型】解答
結(jié)束】
24

【題目】閱讀材料:小胖同學發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.

(1)在圖1中證明小胖的發(fā)現(xiàn);

借助小胖同學總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來解答下面的問題:

(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;

(3)如圖3,在ABC中,AB=AC,BAC=m°,點E為ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求EAF的度數(shù)(用含有m的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在ABC中,∠C=90°,AD是∠BAC的平分線,DEABE,FAC上,BD=DF;

求證:(1CF=EB

2AB=AF+2EB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知A(0,a)、B(b, 0),且a、b滿足: ,點Dx正半軸上一動點

(1)A、B兩點的坐標

(2)如圖,∠ADO的平分線交y軸于點C,點 F為線段OD上一動點,過點FCD的平行線交y軸于點H,且∠AFH=45°, 判斷線段AH、FDAD三者的數(shù)量關(guān)系,并予以證明

(3)AO為腰,A為頂角頂點作等腰△ADO,若∠DBA=30°,直接寫出∠DAO的度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,等腰梯形ABCD的頂點坐標分別為A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A為對稱中心作點P(0,2)的對稱點P1,以B為對稱中心作點P1的對稱點P2,以C為對稱中心作點P2的對稱點P3,以D為對稱中心作點P3的對稱點P4,…,重復操作依次得到點P1,P2,…,則點P2010的坐標是(  )

A. (2010,2) B. (2010,﹣2) C. (2012,﹣2) D. (0,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點A(2,0),B(6,2),C(6,6),反比例函數(shù)y1=(x>0)的圖象過點D,點P是一次函數(shù)y2=kx+3﹣3k(k≠0)的圖象與該反比例函數(shù)的一個公共點,對于下面四個結(jié)論:

①反比例函數(shù)的解析式是y1=;

②一次函數(shù)y2=kx+3﹣3k(k≠0)的圖象一定經(jīng)過(6,6)點;

③若一次函數(shù)y2=kx+3﹣3k的圖象經(jīng)過點C,當x>2時,y1<y2;

④對于一次函數(shù)y2=kx+3﹣3k(k≠0),當yx的增大而增大時,點P橫坐標a的取值范圍是0<a<3.

其中正確的是( 。

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

同步練習冊答案