【題目】△ABC中,BC=10,AB=,∠ABC=30°,點P在直線AC上,點P到直線AB的距離為1,則CP的長為_____.
【答案】或 .
【解析】分析:過點C作CD⊥AB交BA的延長線于點D,根據(jù)∠ABC的正弦和余弦可以求出CD、BD的長度,從而可以求出AD的長度,然后利用勾股定理即可求出AC的長度,再利用相似三角形對應(yīng)邊成比例列式求出AP的長度,再分點P在線段AC上與點P在射線CA上兩種情況討論求解.
詳解:如圖,過點C作CD⊥AB交BA的延長線于點D,
∵BC=10,∠ABC=30°,
∴CD=BCsin30°=5,
BD=BCcos30°=5,
∵AB=4,
∴AD=BD-AB=5-4=,
在Rt△ACD中,AC==.
過P作PE⊥AB,與BA的延長線于點E,
∵點P在直線AC上,點P到直線AB的距離為1,
∴△APE∽△ACD,
∴,
即,
解得AP=,
∴①點P在線段AC上時,CP=AC-AP=2-=,
②點P在射線CA上時,CP=AC+AP=2+=.
綜上所述,CP的長為或.
故答案為:或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點O為正方形ABCD 的中心,E為AB 邊上一點,F為BC邊上一點,△EBF的周長等于 BC 的長.
(1)求∠EOF 的度數(shù).
(2)連接 OA、OC(如圖2).求證:△AOE∽△CFO.
(3)若OE=OF,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某批發(fā)部某一玩具價格如圖所示,現(xiàn)有甲、乙兩個商店,計劃在“六一”兒童節(jié)前到該批發(fā)部購買此類玩具.兩商店所需玩具總數(shù)為120個,乙商店所需數(shù)量不超過50個,設(shè)甲商店購買個.如果甲、乙兩商店分別購買玩具,兩商店需付款總和為y元.
(1)求y關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)若甲商店購買不超過100個,請說明甲、乙兩商店聯(lián)合購買比分別購買最多可節(jié)約多少錢;
(3)“六一”兒童節(jié)之后,該批發(fā)部對此玩具價格作了如下調(diào)整:數(shù)量不超過100個時,價格不變;數(shù)量超過100個時,每個玩具降價a元.在(2)的條件下,若甲、乙兩商店“六一”兒童節(jié)之后去批發(fā)玩具,最多可節(jié)約2800元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=-x2 +bx+c交y軸于點C(0,2),經(jīng)過點Q(2,2).直線y=x+4分別交x軸、y軸于點B、A.
(1)直接填寫拋物線的解析式________;
(2)如圖1,點P為拋物線上一動點(不與點C重合),PO交拋物線于M,PC交AB于N,連MN.
求證:MN∥y軸;
(3)如圖,2,過點A的直線交拋物線于D、E,QD、QE分別交y軸于G、H.求證:CG CH為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格當(dāng)中,三角形的三個頂點都在格點上.直線與直線相交于點.
(1)畫出將三角形向右平移5個單位長度后的三角形(點的對應(yīng)點分別是點).
(2)畫出三角形關(guān)于直線對稱的三角形(點的對應(yīng)點分別是點).
(3)畫出將三角形繞著點旋轉(zhuǎn)后的三角形(點的對應(yīng)點分別是點).
(4)在三角形,,中,三角形 與三角形 成軸對稱,三角形 與三角形 成中心對稱
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD,等邊△ABE.已知∠BAC=30°,EE⊥AB,垂足為F,連接DF;
求證:(1)AC=EF;
(2)四邊形ADFE是平行四邊形;
(3)AC⊥DF;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以頂點A為圓心,適當(dāng)長為半徑畫弧,分別交AC、AB于點M、N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D.若AC=9,AB=15,且S△ABC=54,則△ABD的面積是( )
A. B. C. 45D. 35
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“龜兔首次賽跑”之后,輸了比賽的兔子沒有氣餒,總結(jié)反思后,和烏龜約定再賽一場.圖中的函數(shù)圖象刻畫了“龜兔再次賽跑”的故事(x表示烏龜從起點出發(fā)所行的時間,y1表示烏龜所行的路程,y2表示兔子所行的路程).有下列說法:
①“龜兔再次賽跑”的路程為1000米;
②兔子和烏龜同時從起點出發(fā);
③烏龜在途中休息了10分鐘;
④兔子在途中750米處追上烏龜.
其中正確的說法是 .(把你認(rèn)為正確說法的序號都填上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com