【題目】某校學(xué)生會發(fā)現(xiàn)同學(xué)們就餐時剩余飯菜較多,浪費嚴(yán)重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)“光盤行動”,讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動的重要性,校學(xué)生會在某天午餐后,隨機(jī)調(diào)查了部分同學(xué)這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.
(1)這次被調(diào)查的同學(xué)共有 人;
(2)補全條形統(tǒng)計圖,并在圖上標(biāo)明相應(yīng)的數(shù)據(jù);
(3)校學(xué)生會通過數(shù)據(jù)分析,估計這次被調(diào)查的所有學(xué)生一餐浪費的食物可以供50人食用一餐.據(jù)此估算,該校18000名學(xué)生一餐浪費的食物可供多少人食用一餐.
【答案】(1)1000,(2)答案見解析;(3)900.
【解析】
(1)結(jié)合不剩同學(xué)的個數(shù)和比例,計算總體個數(shù),即可.(2)結(jié)合總體個數(shù),計算剩少數(shù)的個數(shù),補全條形圖,即可.(3)計算一餐浪費食物的比例,乘以總體個數(shù),即可.
解:(1)這次被調(diào)查的學(xué)生共有600÷60%=1000人,
故答案為1000;
(2)剩少量的人數(shù)為1000﹣(600+150+50)=200人,
補全條形圖如下:
(3),
答:估計該校18000名學(xué)生一餐浪費的食物可供900人食用一餐.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過A(-1,0),B(3,0)與點C(0,3),連接BC,點P是直線BC是上方的一個動點(且不與B,C重合).
(1)求拋物線的解析式;
(2)求△PBC的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC是等邊三角形,點D是△ABC(包含邊界)平面內(nèi)一點,連接CD,將線段CD繞C逆時針旋轉(zhuǎn)60°得到線段CE,連接BE,DE,AD,并延長AD交BE于點P.
(1)觀察填空:當(dāng)點D在圖1所示的位置時,填空:
①與△ACD全等的三角形是______.
②∠APB的度數(shù)為______.
(2)猜想證明:在圖1中,猜想線段PD,PE,PC之間有什么數(shù)量關(guān)系?并證明你的猜想.
(3)拓展應(yīng)用:如圖2,當(dāng)△ABC邊長為4,AD=2時,請直接寫出線段CE的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx﹣2(a≠0)的圖象的頂點在第三象限,且過點(1,0),設(shè)t=a﹣b﹣2,則t值的變化范圍是( )
A. ﹣2<t<0 B. ﹣3<t<0 C. ﹣4<t<﹣2 D. ﹣4<t<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是二次函數(shù)圖象的一部分,其對稱軸是,且過點,下列說法:;;;若,是拋物線上兩點,則,其中正確的有
A. 1個
B. 2個
C. 3個
D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)練習(xí)推鉛球,鉛球推出后在空中飛行的軌跡是一條拋物線,鉛球在離地面1米高的A處推出,達(dá)到最高點B時的高度是2.6米,推出的水平距離是4米,鉛球在地面上點C處著地
(1)根據(jù)如圖所示的直角坐標(biāo)系求拋物線的解析式;
(2)這個同學(xué)推出的鉛球有多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=6cm,BC=8cm,如果點E由點B出發(fā)沿BC方向向點C勻速運動,同時點F由點D出發(fā)沿DA方向向點A勻速運動,它們的速度分別為每秒2cm和1cm,FQ⊥BC,分別交AC、BC于點P和Q,設(shè)運動時間為t秒(0<t<4).
(1)連接EF,若運動時間t=秒時,求證:△EQF是等腰直角三角形;
(2)連接EP,當(dāng)△EPC的面積為3cm2時,求t的值;
(3)在運動過程中,當(dāng)t取何值時,△EPQ與△ADC相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的解析式為y=﹣3x+3,且l1與x軸交于點D,直線l2經(jīng)過點A、B,直線l1、l2交于點C.
(1)求直線l2的解析表達(dá)式;
(2)求△ADC的面積;
(3)在直線l2上存在異于點C的另一點P,使得△ADP與△ADC的面積相等,請求出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形ABCD中,BE=EF=FC,CG=2GD,BG分別交AE,AF于M,N,下列結(jié)論:①AF⊥BG;②BN=NF;③;④S四邊形CGNF=S四邊形ANGD.其中正確的結(jié)論的序號是( )
A.①③B.②④C.①②D.③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com