【題目】一筆總額為元的獎(jiǎng)金,分為一等獎(jiǎng)、二等獎(jiǎng)和三等獎(jiǎng),獎(jiǎng)金金額均為整數(shù),每個(gè)一等獎(jiǎng)的獎(jiǎng)金是每個(gè)二等獎(jiǎng)獎(jiǎng)金的兩倍,每個(gè)二等獎(jiǎng)的獎(jiǎng)金是每個(gè)三等獎(jiǎng)獎(jiǎng)金的兩倍,若把這筆獎(jiǎng)金發(fā)給個(gè)人,評(píng)一、二、三等獎(jiǎng)的人數(shù)分別為,且,那么三等獎(jiǎng)的獎(jiǎng)金金額是_______元.
【答案】98或77
【解析】
由a,b,c之間的關(guān)系結(jié)合a,b,c均為整數(shù),即可得出a,b,c的值,設(shè)三等獎(jiǎng)的獎(jiǎng)金金額為x元,則二等獎(jiǎng)的獎(jiǎng)金金額為2x元,一等獎(jiǎng)的獎(jiǎng)金金額為4x元,根據(jù)獎(jiǎng)金的總額為1078元,即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論(取其為整數(shù)的值).
解:∵a+b+c=6,0<a≤b≤c,且a,b,c均為整數(shù),
∴,,.
設(shè)三等獎(jiǎng)的獎(jiǎng)金金額為x元,則二等獎(jiǎng)的獎(jiǎng)金金額為2x元,一等獎(jiǎng)的獎(jiǎng)金金額為4x元,
依題意,得:4x+2x+4x=1078,4x+2×2x+3x=1078,2×4x+2×2x+2x=1078,
解得:x=107.8(不合題意,舍去),x=98,x=77.
故答案為:98或77.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的圖形W1和圖形W2.給出如下定義:在圖形W1上存在兩點(diǎn)A,B(點(diǎn)A,B可以重合),在圖形W2上存在兩點(diǎn)M,N,(點(diǎn)M于點(diǎn)N可以重合)使得AM=2BN,則稱圖形W1和圖形W2滿足限距關(guān)系
(1)如圖1,點(diǎn)C(1,0),D(-1,0),E(0,),點(diǎn)P在線段DE上運(yùn)動(dòng)(點(diǎn)P可以與點(diǎn)D,E重合),連接OP,CP.
①線段OP的最小值為_______,最大值為_______;線段CP的取值范直范圍是_____;
②在點(diǎn)O,點(diǎn)C中,點(diǎn)____________與線段DE滿足限距關(guān)系;
(2)如圖2,⊙O的半徑為1,直線(b>0)與x軸、y軸分別交于點(diǎn)F,G.若線段FG與⊙O滿足限距關(guān)系,求b的取值范圍;
(3)⊙O的半徑為r(r>0),點(diǎn)H,K是⊙O上的兩個(gè)點(diǎn),分別以H,K為圓心,1為半徑作圓得到⊙H和K,若對(duì)于任意點(diǎn)H,K,⊙H和⊙K都滿足限距關(guān)系,直接寫出r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是線段AB上的一點(diǎn),AB=6cm,O是AB外一定點(diǎn).連接OP,將OP繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°得OQ,連接PQ,AQ.小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)線段AP,PQ,AQ的長(zhǎng)度之間的關(guān)系進(jìn)行了探究.
下面是小明的探究過程,請(qǐng)補(bǔ)充完整:
(1)對(duì)于點(diǎn)P在AB上的不同位置,畫圖、測(cè)量,得到了線段AP,PQ,AQ的長(zhǎng)度(單位:cm)的幾組值,如表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | |
AP | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 |
PQ | 4.00 | 2.31 | 0.84 | 1.43 | 3.07 | 4.77 | 6.49 |
AQ | 4.00 | 3.08 | 2.23 | 1.57 | 1.40 | 1.85 | 2.63 |
在AP,PQ,AQ的長(zhǎng)度這三個(gè)量中,確定 的長(zhǎng)度是自變量, 的長(zhǎng)度和 的長(zhǎng)度都是這個(gè)自變量的函數(shù);/span>
(2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定的函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)AQ=PQ時(shí),線段AP的長(zhǎng)度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為做好疫情宣傳巡查工作,各地積極借助科技手段加大防控力度.如圖,亮亮在外出期間被無人機(jī)隔空喊話“戴上口罩,趕緊回家”.據(jù)測(cè)量,無人機(jī)與亮亮的水平距離是15米,當(dāng)他抬頭仰視無人機(jī)時(shí),仰角恰好為,若亮亮身高1.70米,則無人機(jī)距離地面的高度約為________米.(結(jié)果精確到0.1米,參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線.
(1)拋物線的對(duì)稱軸為_______;
(2)若當(dāng)時(shí),的最小值是,求當(dāng)時(shí),的最大值;
(3)已知直線與拋物線存在兩個(gè)交點(diǎn),設(shè)左側(cè)的交點(diǎn)為點(diǎn),當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:為等邊三角形.
(1)求作:的外接圓.(不寫作法,保留作圖痕跡)
(2)射線交于點(diǎn),交于點(diǎn),過作的切線,與的延長(zhǎng)線交于點(diǎn).
①根據(jù)題意,將(1)中圖形補(bǔ)全;
②求證:;
③若,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班甲、乙、丙三名同學(xué)20天的體溫?cái)?shù)據(jù)記錄如下表:
甲的體溫 | 乙的體溫 | 丙的體溫 | ||||||||||||
溫度(℃) | 36.1 | 36.4 | 36.5 | 36.8 | 溫度(℃) | 36.1 | 36.4 | 36.5 | 36.8 | 溫度(℃) | 36.1 | 36.4 | 36.5 | 36.8 |
頻數(shù) | 5 | 5 | 5 | 5 | 頻數(shù) | 6 | 4 | 4 | 6 | 頻數(shù) | 4 | 6 | 6 | 4 |
則在這20天中,甲、乙、丙三名同學(xué)的體溫情況最穩(wěn)定的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,函數(shù)y1=x(x<m)的圖象與函數(shù)y2=x2(x≥m)的圖象組成圖形G.對(duì)于任意實(shí)數(shù)n,過點(diǎn)P(0,n)且與x軸平行的直線總與圖形G有公共點(diǎn),寫出一個(gè)滿足條件的實(shí)數(shù)m的值為_____(寫出一個(gè)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠MON=α,A為射線OM上一定點(diǎn),OA=5,B為射線ON上一動(dòng)點(diǎn),連接AB,滿足∠OAB,∠OBA均為銳角.點(diǎn)C在線段OB上(與點(diǎn)O,B不重合),滿足AC=AB,點(diǎn)C關(guān)于直線OM的對(duì)稱點(diǎn)為D,連接AD,OD.
(1)依題意補(bǔ)全圖1;
(2)求∠BAD的度數(shù)(用含α的代數(shù)式表示);
(3)若tanα=,點(diǎn)P在OA的延長(zhǎng)線上,滿足AP=OC,連接BP,寫出一個(gè)AB的值,使得BP∥OD,并證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com